
C/C++ for Fortran Programmers

●If it's Turing Complete, you can do what you want ... eventually.

●There are no magic bullets:
●But some problems are screws and some are nails. A well-
stocked toolbox makes life easier.
●You can write bad programs in any language
●Real Programmers can write Fortran in any language

http://polar.ncep.noaa.gov/mmab/papers/tn186/
http://polar.ncep.noaa.gov/mmab/faqs/demos.html
/nwprod/lib/sorc/omblib/

●Fortran 66, 77, 90,
●Watfor, Ratfor, Watfiv,
●Vendor versions

●C, C++, Objective C
●Basic
●Pascal
●Java
●Logo
●VAX assembly, 68030 assembly
●Perl, javascript, IDL, Matlab, ...
●Lisp, Forth, Ada, Cobol, ...
●Python, ...

Fortran 'vs' C/C++

● High Optimization

● Beat on bunches of
known numbers
(numerical model)

● Deal with
mathematical libraries

● High Flexibility

● Figure out what
numbers to work with
(satellite data flow)

● Deal with operating
system, X, ...

C vs. C++

C ~ F90 (procedural, limited type structuring, ...)

C++ ~ F2003 (Object-oriented ...)

C: singular purpose, few or no structures, little expected descent
C++: general purpose, structures, operations, descendants

●Object Orientation:
●What kinds of things are you working on?
●What kinds of things do you do to them?
●What kinds of things can they do?

●Inheritance -> Build up entities
●Overloading -> select function based on arguments
●Templating
●Encapsulation
●Virtual Classes

●Pass by Reference
●Pass by Value

tempate <class T>
class math_demo {
private:

...
protected:

...
public:

T value;
math_demo(); -- Constructor
T add(T);
...

};

int main(void) {
math_demo x, y;
x.value = 5;
y.value = 2;
x.add(y.value);
printf(“x now = %d\n”,x.value);
return 0;

}

Trivial here, but try it with avbuoy (buoy.h) instead

Class Inheritance

●grid2_base<T>
●grid2<T>

●metricgrid<T>
●psgrid<T>
●nam<T>
●gaussian<T>
●llgrid<T>

●global_half<T>
●global_12th<T>

T62L18 – 3d grid
T384L64
GFS3d
NAM3d

●Grid2_base:
●2d array of 'things'
●read, write, subset, equate, ...

●grid2:
●do math

●metric: (virtual)
●points have a geophysical location

●llgrid: (ex)
●points are arrayed on a particular type of projection

●global_12th: (ex)
●points are on a 1/12th degree lat-long grid (in NCEP convention)

●gl_lambert_1km
●Great lakes domain, 1 km lambert projection

Metric (virtual class)
latpt locate(ijpt) = 0;
fijpt locate(latpt) = 0;

*Base class demands operations of its descendants.
*Person implementing those operations is expert on
how they work for their case
*User need know nothing beyond the above (vs.
shapes of earth, ...)

But, also could add:
fijpt locate(latpt, r_earth, eccentricity);
fijpt locate(latpt, WGS84);

Leading to:

void gridup_satellite(metricgrid &x, avhrr &y, modis &z) {
...
ijlocation = x.locate(y.latpt);
x[ijlocation] = y.value;
...
x[z.latpt] += z.value;
}

Note:
& is pass by reference (Fortran-style)
–> C++ permits exact(ish) duplication of your Fortran expectations

●Parameters
●Points
●Mvector
●Grib

●Buoy
●Color
●Genes
●Grid_base
●ssmiclass

●ncepgrids
●psgrid
●llgrid
●Cofs
●Eta
●Gaussian
●lambert
●resops

●Grid3
●Metricgrid

●Date
●Location
●...

●grid_math

Note: buoy (c.f.) already has date-related info, but isn't
using a date class. We can change this transparently
to user (if we've written the class correctly in the
first place)

