
February, 2009© Paul van Delst

Betty Petersen Memorial Library
Technical Seminar Series

Paul van Delst

Fortran95 and Fortran2003
Tips and Techniques to Help Build
Robust, Maintainable Code

2. What can Modules do for you?

February, 2009Fortran95/2003 Seminar Series. 2: Modules 2

Introduction

• Modules are a “new” program unit introduced in
Fortran90.

• Goal of this seminar is to use modules as vehicle for
explanation of Fortran95/2003 features.

February, 2009Fortran95/2003 Seminar Series. 2: Modules 3

Overview
• What we’ll be covering this time

– Software construction concepts
– Concepts of “scope” and “association”
– Explicit and implicit interfaces

 What’s the difference?
 Why explicit interfaces are A Good Thing.™

– Typical application of modules.
 User defined generic procedures
 User defined operators

– If there’s time, a brief introduction to Fortran2003 object-oriented
programming capabilities and syntax.

• A lot of material is not specific to modules, but we’ll discuss it
in that context.

• As always, please ask questions for clarification.

February, 2009Fortran95/2003 Seminar Series. 2: Modules 4

Software Construction Concepts

• Abstraction
• Encapsulation
• Inheritance
• Information hiding
• Coupling
• Cohesion

• All used to manage complexity.

From McConnell, S., “Code Complete”, 2nd ed.

Ability to engage with a
concept while safely
ignoring some of its
details - handling different
details at different levels.

Picks up where abstraction
left off. It defines the level
of detail you are allowed
to see.

Allows you to use general
properties in a specific
context.
Only the necessary
information is revealed.
Allows you hide
complexity.

Describes how tightly
some “things” are related
to other “things”
Refers to how closely
“things” support a central
purpose - how focused
they are.

February, 2009Fortran95/2003 Seminar Series. 2: Modules 5

Modules

• Modules allow you to package data and procedure
specifications

• They serve the following needs:
– A reliable mechanism for specifying global data (variables,

type definitions, procedure interfaces)
– Facilitate information hiding
– Provide explicit interfaces for procedures and thus reduce

argument mismatch errors
– Facilitate implementation of object-oriented (OO) concepts
[§11.3 Fortran2003 Handbook]

February, 2009Fortran95/2003 Seminar Series. 2: Modules 6

Basic Anatomy of a Module
MODULE module_name

[specification-part]
[CONTAINS

module-subprogram-1
[module-subprogram-2]

.

.
[module-subprogram-n]]

END MODULE module-name

• USE statements (first)
• IMPLICIT NONE (please!)
• Declarations

• Module parameters
• Module variables
• Derived type definitions
• Interface blocks

The part of the module for
specifying subprograms is
optional, i.e. modules can
contain only specifications.

Module subprograms
are FUNCTIONs or
SUBROUINEs. They can
CONTAIN their own
internal subprograms.

February, 2009Fortran95/2003 Seminar Series. 2: Modules 7

Scope

• The scope of a program entity is the part of the
program in which that entity is known, is available,
and can be used. [§2.3.3 Fortran2003 Handbook]

• In FORTRAN77, scope was defined in terms of
program units.

• In Fortran90+, scope is defined in terms of “scoping
units”:
– Program unit or subprogram,
– Derived type definition,
– Interface body.

• Main program
• Module
• External subprogram
• Block data

February, 2009Fortran95/2003 Seminar Series. 2: Modules 8

Scope Example (1)
MODULE my_define Scoping unit 4
INTEGER, PARAMETER :: N=5 Scoping unit 4
TYPE :: my_type Scoping unit 1

INTEGER :: n=2 Scoping unit 1
REAL :: x=0.0,y=0.0 Scoping unit 1

END TYPE Scoping unit 1
CONTAINS Scoping unit 4
FUNCTION module_func(a) RESULT(b) Scoping unit 3

TYPE(my_type), INTENT(IN) :: a Scoping unit 3
TYPE(my_type) :: b Scoping unit 3
INTEGER :: n = 3 Scoping unit 3
…procedure body… Scoping unit 3

CONTAINS Scoping unit 3
SUBROUTINE internal_sub Scoping unit 2

INTEGER :: n Scoping unit 2
…procedure body… Scoping unit 2

END SUBROUTINE internal_sub Scoping unit 2
END FUNCTION module_func Scoping unit 3

END MODULE my_define Scoping unit 4

The various variables and parameters with
the name “n” are different entities.

February, 2009Fortran95/2003 Seminar Series. 2: Modules 9

Scope Example (2)
PROGRAM demo_scope Scoping unit 4
INTEGER :: n=5 Scoping unit 4
INTERFACE Scoping unit 4

SUBROUTINE external_sub(n) Scoping unit 1
INTEGER, INTENT(IN) :: n Scoping unit 1

END SUBROUTINE external_sub Scoping unit 1
END INTERFACE Scoping unit 4
…program body… Scoping unit 4

END PROGRAM demo_scope Scoping unit 4

SUBROUTINE external_sub(i) Scoping unit 3
INTEGER, INTENT(IN) :: i Scoping unit 3
INTEGER :: n = 4 Scoping unit 3
…procedure body… Scoping unit 3

CONTAINS Scoping unit 3
SUBROUTINE internal_sub Scoping unit 2

INTEGER :: n Scoping unit 2
…procedure body… Scoping unit 2

END SUBROUTINE internal_sub Scoping unit 2
END SUBROUTINE external_sub Scoping unit 3

Interface block

D.R.Y. : Don’t Repeat Yourself!

February, 2009Fortran95/2003 Seminar Series. 2: Modules 10

Association
• The concept that is used to describe how different

entities in the same scoping unit or different scoping
units can share values and other properties. [§2.3.4
Fortran2003 Handbook]

• Fortran95 associations:
– Use association
– Host association
– Pointer association

• Fortran2003 associations:
– Inheritance association (OO stuff)
– Linkage association (C Interop)
– Construct association (SELECT TYPE, ASSOCIATE)

• Storage association won’t be covered.

We’ll be concentrating on
these this time.

February, 2009Fortran95/2003 Seminar Series. 2: Modules 11

Use Association

• Use association makes entities defined in modules
accessible via the (surprise) USE statement.

• USE statements must be the first statements in a
specification part.

• Some syntax examples:
USE modname
USE modname, my_x=>x
USE modname, ONLY:x,y,z

Use all public entities
from the module.

Use all public entities
from the module, but
rename the module
entity x with a local
name of my_x.

Use only the public entities
x, y, and z from the module.

February, 2009Fortran95/2003 Seminar Series. 2: Modules 12

Host Association
• Host association permits entities in a host scoping unit to be

accessible in an internal subprogram, module subprogram, or
derived type definition.

• No mechanism for renaming entities
• In Fortran95, an interface body does not access its

environment by host association.
• Fortran2003 solved this problem via the IMPORT statement.

Only for interface bodies. E.g.
INTERFACE

FUNCTION func(f)
IMPORT :: t, fp
TYPE(t) :: func
REAL(fp):: f

END FUNCTION func
END INTERFACE

The derived type
definition t and the kind
type fp from the host
module are IMPORTed
into the interface body.

February, 2009Fortran95/2003 Seminar Series. 2: Modules 13

Explicit Interfaces

• For calls to internal subprograms, compilers have
access to its interface;
– Is it a function or subroutine?
– The names and properties of its arguments
– Properties of the result if it’s a function.

• This allows the compiler to check if the actual and
dummy arguments match as they should.

• In this case we say the interface is explicit.
• Similarly for calls to module subprograms.
• By default, module subprograms have explicit

interfaces.

February, 2009Fortran95/2003 Seminar Series. 2: Modules 14

Implicit Interfaces

• For calls to external subprograms, compilers typically
do not have access to the code;
– Same file, but different program unit.
– Completely different file.

• The calling code knows nothing about the interface,
e.g. argument type or rank.

• Here we say the interface is implicit.
• These interfaces can be made explicit via interface

blocks.
• FORTRAN77 interfaces are always implicit.

February, 2009Fortran95/2003 Seminar Series. 2: Modules 15

Why are explicit interfaces good?
• Argument checking.

– Type, Kind, and Rank are known at compile time.
• Assumed shape dummy arguments.
• Function result that is an array, pointer, or allocatable.
• Function result that is dynamically sized.
• ELEMENTAL attribute.
• Some dummy argument attributes require it.

– ALLOCATABLE, ASYNCHRONOUS, OPTIONAL, POINTER,
TARGET, VALUE, or VOLATILE

• Dummy argument of parameterised derived type.
• Polymorphic dummy argument.
• BIND attribute

February, 2009Fortran95/2003 Seminar Series. 2: Modules 16

Argument Checking
• Let’s say you have a module subprogram:

SUBROUTINE sub(i)
INTEGER :: i
…

END SUBROUTINE sub

• And let’s say you call it like so,
REAL :: x
…
CALL sub(x)

• The compiler will flag an error because the interfaces don’t
match.

• Depending on your application, this may or may not be what
you want.

• Deliberate argument mismatching like that above (e.g.
assuming storage association) is discouraged.

February, 2009Fortran95/2003 Seminar Series. 2: Modules 17

Assumed Shape Dummy Arguments
• Once again, let’s say you have a module subprogram:

FUNCTION func(x)
REAL :: x(:,:)
…

END FUNCTION func

• For an array actual argument, the compiler needs to
know whether to pass a “dope vector” or a storage
address.

• Which one depends on the dummy declaration:
– Assumed shape  dope vector
– Explicit shape or assumed size  storage address

• With assumed shape, you can query the dummy. Let’s
say you passed an actual argument arr(0:5:2,1:6:3),
n = SIZE(x) Total number of elements?
PRINT *, SHAPE(x) The array shape?

Data structure used to hold
information about a data object.

6
(/3,2/) or [3,2]

February, 2009Fortran95/2003 Seminar Series. 2: Modules 18

Dynamically Sized Function Result
• In Fortran90+, functions can return array results.
• What if you want your result to be the same size as your input?
• We use assumed shape dummy arguments and the RESULT clause.
• Once again, let’s say you have a module subprogram:

FUNCTION func(x) RESULT(y)
REAL, INTENT(IN) :: x(:,:)
REAL :: y(SIZE(x,DIM=1),SIZE(x,DIM=2))
…

END FUNCTION func

• The result will be the same size as your input. And you call it like
you would any other function,
REAL :: a(4,7),b(4,7)
…
b = func(a)

• The compiler will also check for conformance of the rank of the
result with the actual argument. But not size.

February, 2009Fortran95/2003 Seminar Series. 2: Modules 19

ELEMENTAL Attribute (1)
• What if you want your array-valued result function to work for

rank-3 input also? Or rank-4? Just like intrinsic functions do
(e.g. SIN, EXP, etc)

• Fortran95 introduced the ELEMENTAL prefix.
• Elemental procedures are defined with scalar dummy

arguments, but may be referenced with actual arguments that
are of any rank, provided they are conformable.

• So, our module subprogram would become simply:
ELEMENTAL FUNCTION func(x) RESULT(y)
REAL, INTENT(IN) :: x
REAL :: y
…

END FUNCTION func

• Elemental procedures automatically have the PURE attribute.

February, 2009Fortran95/2003 Seminar Series. 2: Modules 20

ELEMENTAL Attribute (2)
• The Simple Set of Rules for PURE procedures:

– If a function, does not alter dummy arguments,
– Does not alter any part of a variable accessed by use or host

association,
– Contains no local variables with the SAVE attribute,
– Performs no operation on an external file,
– Contains no STOP statement.

• The Simple Set of Additional Rules for ELEMENTAL
procedures:
– It must not be recursive,
– Dummy arguments must be a nonpointer, nonallocatable, scalar data

object,
– The result of an elemental function must be scalar and not a pointer or

allocatable,
– Dummy arguments must not be used in a specification expression (the

exceptions are beyond the scope of this slide.)

February, 2009Fortran95/2003 Seminar Series. 2: Modules 21

Typical Applications of Modules

• Modules provide a way of packaging:
– Data
– User-defined types
– User-defined operators
– Data abstraction
– Encapsulation
– Procedure libraries
[§11.3.9 Fortran2003 Handbook]

February, 2009Fortran95/2003 Seminar Series. 2: Modules 22

Packaging Data (1)

MODULE Type_Kinds
IMPLICIT NONE
PRIVATE
PUBLIC :: Byte,Short,Long
PUBLIC :: Single,Double
! Integer types
INTEGER, PARAMETER :: Byte =SELECTED_INT_KIND(1)
INTEGER, PARAMETER :: Short=SELECTED_INT_KIND(4)
INTEGER, PARAMETER :: Long =SELECTED_INT_KIND(8)
! Floating point types
INTEGER, PARAMETER :: Single=SELECTED_REAL_KIND(6)
INTEGER, PARAMETER :: Double=SELECTED_REAL_KIND(15)

END MODULE Type_Kinds

Set default visibility
to PRIVATE and
specifically list
PUBLIC entities.

Define the data entities you want to “package”.

February, 2009Fortran95/2003 Seminar Series. 2: Modules 23

Packaging Data (2)
MODULE Shared_Data
USE Type_Kinds, ONLY:fp=>Double
IMPLICIT NONE
REAL(fp), ALLOCATABLE, SAVE :: x(:), y(:)
REAL(fp), ALLOCATABLE, SAVE :: z(:,:)

END MODULE Shared_Data

ONLY clause limits
entities that are
visible. Aliasing
symbol => used in
rename.

Data to be shared among
USEing modules or programs.
But why the SAVE attribute?

PROGRAM Demo_Shared_Data
CALL Load_Data()
CALL Display_Data()

END PROGRAM Demo_Shared_Data

The external subprograms USE the Shared_Data
module. What happens to the data upon return from
the Load_Data() subprogram without SAVE?

Adapted from Redwine, C., “Upgrading to Fortran90”

February, 2009Fortran95/2003 Seminar Series. 2: Modules 24

Packaging Derived Types
MODULE Rational_Define
USE Type_Kinds, ONLY: Long
IMPLICIT NONE
PRIVATE
PUBLIC :: Rational_type, Long
! Derived type definition
TYPE :: Rational_type
INTEGER :: num, denom

END TYPE Rational_type
END MODULE Rational_Define

Modules can USE
other modules.
ONLY clause limits
entities made visible.

Explicit visibility.
Note that Long is
“passed through”.

Derived type definition. Any program unit
gains access to this type definition via a

USE Rational_Define
statement.

Adapted from Redwine, C., “Upgrading to Fortran90”

February, 2009Fortran95/2003 Seminar Series. 2: Modules 25

Packaging Related Operations
MODULE Rational_Operators
USE Rational_Define
IMPLICIT NONE
PRIVATE
PUBLIC :: Mult, Add

CONTAINS
! Product of two rational numbers
FUNCTION Mult(r1,r2) RESULT(prod)
TYPE(Rational_type),INTENT(IN) :: r1,r2
TYPE(Rational_type) :: prod
prod=Rational_type(r1%num *r2%num, &

r1%denom*r2%denom)
END FUNCTION Mult
! Sum of two rational numbers
FUNCTION Add(r1,r2) RESULT(sum)

…
END FUNCTION Add

END MODULE Rational_Operators

Module usage and
explicit visibility.

Note RESULT clause
for functions.

prod%num =r1%num *r2%num
prod%denom=r1%denom*r2%denom

Adapted from Redwine, C., “Upgrading to Fortran90”

February, 2009Fortran95/2003 Seminar Series. 2: Modules 26

Abstraction (1)

• What is it really?
• As mentioned earlier, it’s the ability to engage with a

concept while safely ignoring some of its details.
• In the context of this seminar, it’s a fancy term for

the practice of combining derived type definitions
and their related operators in the same package.

• It allows you to deal with complexity at different
levels, while ignoring many of the implementation
details.

February, 2009Fortran95/2003 Seminar Series. 2: Modules 27

Abstraction (2)
MODULE Rational_Define
IMPLICIT NONE
PRIVATE
PUBLIC :: OPERATOR(*),OPERATOR(+)
TYPE :: Rational_type
INTEGER :: num, denom

END TYPE Rational_type
INTERFACE OPERATOR (*)
MODULE PROCEDURE Mult

END INTERFACE
INTERFACE OPERATOR (+)
MODULE PROCEDURE Add

END INTERFACE
CONTAINS
FUNCTION Mult(r1,r2) RESULT(prod)

…
FUNCTION Add(r1,r2) RESULT(sum)

…
END MODULE Rational_Define

Use of an interface
block to overload the
intrinsic operators ‘*’
and ‘+’ to work with
derived types.

Defining visibility
of overloaded
operators.

February, 2009Fortran95/2003 Seminar Series. 2: Modules 28

Abstraction (3)

PROGRAM Demo_Rational_1
USE Rational_Operators
IMPLICIT NONE
TYPE(Rational_type) :: frac1,frac2,prod,sum
…
prod = Mult(frac1,frac2)
sum = Add(frac1,frac2)

END PROGRAM Demo_Rational_1

PROGRAM Demo_Rational_2
USE Rational_Define
IMPLICIT NONE
TYPE(Rational_type) :: frac1,frac2,prod,sum
…
prod = frac1 * frac2
sum = frac1 + frac2

END PROGRAM Demo_Rational_2

Compare a “traditional” approach:

With one in which abstraction is used:

February, 2009Fortran95/2003 Seminar Series. 2: Modules 29

Abstraction (4)
• Who has compared floating point numbers?

• Rather than
IF(x==y)THEN…

we do something like,
IF(ABS(x-y) < tolerance)THEN…

• What tolerance value? Typically depends on
magnitudes of x and y.

• How to dynamically select a tolerance in a
comparison operator?

February, 2009Fortran95/2003 Seminar Series. 2: Modules 30

Abstraction (5)
MODULE Compare_Float_Numbers
PRIVATE
PUBLIC :: OPERATOR (.EqualTo.)
INTERFACE OPERATOR (.EqualTo.)
MODULE PROCEDURE EqualTo_Single
MODULE PROCEDURE EqualTo_Double

END INTERFACE OPERATOR (.EqualTo.)
CONTAINS
ELEMENTAL FUNCTION EqualTo_Single(x,y) RESULT(EqualTo)
REAL(Single), INTENT(IN) :: x, y
LOGICAL :: EqualTo
EqualTo = ABS(x-y) < SPACING(MAX(ABS(x),ABS(y)))

END FUNCTION EqualTo_Single
ELEMENTAL FUNCTION EqualTo_Double(x,y) RESULT(EqualTo)
REAL(Double), INTENT(IN) :: x, y
LOGICAL :: EqualTo
EqualTo = ABS(x-y) < SPACING(MAX(ABS(x),ABS(y)))

END FUNCTION EqualTo_Double
END MODULE Compare_Float_Numbers

Scalar or any
rank arguments
and result.

February, 2009Fortran95/2003 Seminar Series. 2: Modules 31

Abstraction (6)

PROGRAM Demo_Compare_Float_1
IMPLICIT NONE
REAL(Single) :: xs,ys,tols=1.0e-07_Single
REAL(Double) :: xd,yd,told=1.0e-15_Double
…
IF(ABS(xs-ys)<tols)THEN…
IF(ABS(xd-yd)<told)THEN…

END PROGRAM Demo_Compare_Float_1

PROGRAM Demo_Compare_Float_2
USE Compare_Float_Numbers
IMPLICIT NONE
REAL(Single) :: xs,ys
REAL(Double) :: xd,yd
…
IF(xs.EqualTo.ys)THEN…
IF(xd.EqualTo.yd)THEN…

END PROGRAM Demo_Compare_Float_2

Again, a “traditional” approach:

Compared to one with some abstraction:

February, 2009Fortran95/2003 Seminar Series. 2: Modules 32

Encapsulation (1)
• Encapsulation explicitly specifies what level of detail is made

available.
• It allows you to manage complexity by forbidding you to look

at the complexity.
• Along with abstraction, it allows you to hide the

implementation details that are not necessary to use
something.

• Think of a car. When you drive one do you:
– Set the timing of the valves and pistons?
– Modify how the fuel/air mix is injected into the cylinders?
– Adjust the suspension when the road gets bumpy?

No. All those complex systems are encapsulated - depending
on the age of your car, you can only affect them by how you
choose to drive…which is why you have a car.

February, 2009Fortran95/2003 Seminar Series. 2: Modules 33

Encapsulation (2)
TYPE :: MyType_type
INTEGER :: n_Allocates,n_x,n_y
REAL, ALLOCATABLE :: x(:),y(:),z(:,:)

END TYPE MyType_type

TYPE :: MyType_type
PRIVATE
INTEGER :: n_Allocates,n_x,n_y
REAL, ALLOCATABLE :: x(:),y(:),z(:,:)

END TYPE MyType_type

TYPE :: MyType_type
PRIVATE
INTEGER :: n_Allocates
INTEGER, PUBLIC :: n_x,n_y
REAL, ALLOCATABLE :: x(:),y(:),z(:,:)

END TYPE MyType_type

All components
are public.

All components
are private.

Some components
are public, others
are private.

February, 2009Fortran95/2003 Seminar Series. 2: Modules 34

Encapsulation (3)
• With our derived data type fully private, what functionality

might we need in our module?
– Must haves:

 Ability to allocate the internals,
 Ability to assign x, y, and z values to their respective components,
 Ability to retrieve the x, y, and z values.

– Would be nice:
 Ability to combine data from different instances of data types?
 Ability to search data?
 Arithmetic operations?
 etc.

• Users can interact with the data type only via the functionality
provided in the module.

• All the internal implementation details are hidden.
• In OO-speak, the derived data type is like a “class”, and the

module subprograms are like its “methods”.

February, 2009Fortran95/2003 Seminar Series. 2: Modules 35

Encapsulation (4)
• What’s so great about our encapsulated setup?

– Users don’t have to worry about the details.
– They just interact with the data type as needed.
– Functionality can be easily added.
– Testing is much, much easier. You test each little bit as you go.

• What’s not so great?
– A lot more overhead writing software.
– Users might not have the functionality they need.
– Scientists are a funny lot…some simply want access to the guts of things

(which is why Windows completely bamboozles me )

• Sometimes a compromise works. For example:
– The CRTM adopted a convention where the various datatype internals are not

private.
– Avoids the overhead of Get() and Set() type of functions.
– Allocate, Destroy, Assign, Equal, Info procedures are provided.

February, 2009Fortran95/2003 Seminar Series. 2: Modules 36

Fortran2003 OOP

• Type extension
• Polymorphic entities
• ASSOCIATE and SELECT TYPE constructs
• Type-bound procedures
• Abstract types
• Finalization
• Type inquiry intrinsics

February, 2009Fortran95/2003 Seminar Series. 2: Modules 37

Type Extension (1)
Type definitions
TYPE :: base_type
REAL :: a
INTEGER :: i

END TYPE base_type

TYPE, EXTENDS(base_type) :: char_type
CHARACTER(20) :: c

END TYPE char_type

Variable definitions
TYPE(base_type) :: x
TYPE(char_type) :: y

Usage
x%a=1.0; x%i=3
y%a=3.14159; y%i=7; y%c=‘pi’

The EXTENDS attribute
lets you specify a
parent type from which
the extended type
inherits.

February, 2009Fortran95/2003 Seminar Series. 2: Modules 38

Type Extension (2)
module jon
type base_type

real :: a = 1.0
integer :: i = 4

end type base_type
type, extends(base_type) :: char_type

character(20) :: c = 'woohoo'
end type char_type

end module jon

program test_jon
use jon
type(base_type) :: x
type(char_type) :: y
print *, y%base_type
print *, y%a, y%i

end program test_jon

pooter:~/scratch $ gfortran --std=f2003 jon.f90
pooter:~/scratch $ a.out
1.00000000 4
1.00000000 4

The base type components are accessible via
either the y%base_type reference, or y%a, y%i

February, 2009Fortran95/2003 Seminar Series. 2: Modules 39

Summary

• What module related topics we’ve looked at:
– Software construction concepts
– Concepts of “scope” and “association”
– Explicit and implicit interfaces
– Typical application of modules.

• What to do with the information?
– How can the concepts be applied in your current work

• Was the information useful?
– Let me know: paul.vandelst@noaa.gov

February, 2009Fortran95/2003 Seminar Series. 2: Modules 40

Next Time

• Object-oriented programming?

• C-Interoperability?

• Or…?

• What would you like to see in any future
Fortran95/2003 seminars?

February, 2009Fortran95/2003 Seminar Series. 2: Modules 41

Where to Get More Information

• Fortran Forum?
• I would like to get a bulletin-board type of forum set

up on the library website.
• IT issues are getting in the way.
• Talk to your colleagues and supervisor about it -

maybe with more managerial support, it will happen
sooner.

• This building contains a wealth of expertise.

February, 2009Fortran95/2003 Seminar Series. 2: Modules 42

Where to Get More Information
• comp.lang.fortran newsgroup.

– Many members of the current and past standards
committee, and some compiler vendors, frequent it.

• Books!
– I recommend people have a read of “Code Complete” by

Steve McConnell.
– He also has a website:

http://cc2e.com

