
December, 2008© Paul van Delst

Betty Petersen Memorial Library
Technical Seminar Series

Paul van Delst

Fortran95 and Fortran2003
Tips and Techniques to Help Build
Robust, Maintainable Code

1. Introduction

December, 2008Fortran95/2003 Seminar Series. 1: Introduction 2

Introduction

• The goal of these Fortran seminars is quite simple:
– Describe Fortran95 features.
– Introduce Fortran2003 syntax and features.
– Discuss how can we use these features in our software

development to create high quality, robust, maintainable
(extensible?) code?

• What is your experience with f95/2003?

• What do you want to know about f95/2003?

December, 2008Fortran95/2003 Seminar Series. 1: Introduction 3

Overview

• What we’ll be covering this time
– Kind types
– Attributes
– Derived types
– Array syntax

• Most of these topics are fundamental, so you may
already know about them and use them.

• The subject matter isn’t covered linearly, particularly
with respect to Fortran2003 features and more
esoteric Fortran95 usage.

• Please ask questions for clarification.

December, 2008Fortran95/2003 Seminar Series. 1: Introduction 4

Kind types

• New intrinsics to allow user to select the “kind” of
integer or real variable.

• SELECTED_INT_KIND(I)
– Return the kind value of the smallest integer type that can

represent all values -10I to 10I

• SELECTED_REAL_KIND(P,R)
– Return the kind value of a real data type with decimal

precision of at least P digits and exponent range greater
than at least R.

• Note the “smallest” and “at least” in the definitions.
Supported kind types still depend on hardware and
software.

December, 2008Fortran95/2003 Seminar Series. 1: Introduction 5

Kind types - Integer
• Some examples:

Integer
SELECTED_INT_KIND(1) = 1
SELECTED_INT_KIND(2) = 1
SELECTED_INT_KIND(3) = 2
SELECTED_INT_KIND(4) = 2
SELECTED_INT_KIND(5) = 4
SELECTED_INT_KIND(6) = 4
SELECTED_INT_KIND(7) = 4
SELECTED_INT_KIND(8) = 4
SELECTED_INT_KIND(9) = 4
SELECTED_INT_KIND(10) = 8

These specify the size
of the integer type.

These are the resultant
integer KIND TYPES.

NOTE: These values
are not portable.
Different compilers may
use different values.

Note the repeated kind type values for different sizes. Not all
integer representations are available. E.g. ±105

to ±109

values
are possible with a single kind type (“long integer”).

December, 2008Fortran95/2003 Seminar Series. 1: Introduction 6

Real
SELECTED_REAL_KIND(1) = 4
SELECTED_REAL_KIND(2) = 4
SELECTED_REAL_KIND(3) = 4
SELECTED_REAL_KIND(4) = 4
SELECTED_REAL_KIND(5) = 4
SELECTED_REAL_KIND(6) = 4
SELECTED_REAL_KIND(7) = 8
SELECTED_REAL_KIND(8) = 8
SELECTED_REAL_KIND(9) = 8
SELECTED_REAL_KIND(10) = 8

Kind types - Real
• Some examples: These specify the decimal

precision of the real type.

These are the resultant
real KIND TYPES.

Again, these values are
not portable. Different
compilers may use
different values.

Note the repeated kind type values for different precisions. As
with integer types, not all real representations are available.
Remember the “at least”

part of the definition.

December, 2008Fortran95/2003 Seminar Series. 1: Introduction 7

Kind types - Portability issues
• You’re probably familiar with the f77 extension:

INTEGER*4, or REAL*8
where the “4” and “8” indicate byte size.

• These are not synonymous with the f95 syntax:
INTEGER(4), or REAL(8)

where the “4” and “8” are kind types. Some
compilers use
INTEGER(3), or REAL(2)

to represent the same types.
• Never use literal constants for kind types.
• Always use parameterised kind types derived from

the SELECTED_*_KIND() intrinsics.

Do not do this!

December, 2008Fortran95/2003 Seminar Series. 1: Introduction 8

Kind types - the Module
MODULE Type_Kinds
! No implicit typing
IMPLICIT NONE
! Explicit visibility declaration
PRIVATE
PUBLIC :: Byte, Short, Long
PUBLIC :: Single, Double
PUBLIC :: ik, rk
! Integer kinds
INTEGER, PARAMETER :: Byte = SELECTED_INT_KIND(1) ! Byte
INTEGER, PARAMETER :: Short = SELECTED_INT_KIND(4) ! Short
INTEGER, PARAMETER :: Long = SELECTED_INT_KIND(8) ! Long
! Floating point kinds
INTEGER, PARAMETER :: Single = SELECTED_REAL_KIND(6) ! Single
INTEGER, PARAMETER :: Double = SELECTED_REAL_KIND(15) ! Double
! Generic kinds
INTEGER, PARAMETER :: ik = Long ! Generic integer kind
INTEGER, PARAMETER :: rk = Double ! Generic real kind

END MODULE Type_Kinds

Always do this!

Self-documentation!

Use of generic kind types makes precision changes easier.

December, 2008Fortran95/2003 Seminar Series. 1: Introduction 9

Kind types – USEing the Module
PROGRAM Display_Type_Kinds
! Use the module
USE Type_Kinds
! No implicit typing
IMPLICIT NONE
! Declare variables
INTEGER(Byte) :: bi
INTEGER(Short) :: si
INTEGER(Long) :: li
REAL(Single) :: sr
REAL(Double) :: dr
WRITE(*,'("Huge(bi)=",i10,5x,i10)')HUGE(bi),10_Byte**1 - 1
WRITE(*,'("Huge(si)=",i10,5x,i10)')HUGE(si),10_Short**4 - 1
WRITE(*,'("Huge(li)=",i10,5x,i10)')HUGE(li),10_Long**8 - 1
WRITE(*,'("Prec,Range(sr)=",i5,1x,i5)')PRECISION(sr),RANGE(sr)
WRITE(*,'("Prec,Range(dr)=",i5,1x,i5)')PRECISION(dr),RANGE(dr)

END PROGRAM Display_Type_Kinds

How to use modules in your code.

How to declare variables
of different kinds.

New intrinsics

to inquire about a datatype:
HUGE(), PRECISION(), RANGE().

December, 2008Fortran95/2003 Seminar Series. 1: Introduction 10

Kind types – USEing the Module
PROGRAM Display_Type_Kinds
! Use the module
USE Type_Kinds
! No implicit typing
IMPLICIT NONE
! Declare variables
INTEGER(Byte) :: bi
INTEGER(Short) :: si
INTEGER(Long) :: li
REAL(Single) :: sr
REAL(Double) :: dr
WRITE(*,'("Huge(bi)=",i10,5x,i10)')HUGE(bi),10_Byte**1 - 1
WRITE(*,'("Huge(si)=",i10,5x,i10)')HUGE(si),10_Short**4 - 1
WRITE(*,'("Huge(li)=",i10,5x,i10)')HUGE(li),10_Long**8 - 1
WRITE(*,'("Prec,Range(sr)=",i5,1x,i5)')PRECISION(sr),RANGE(sr)
WRITE(*,'("Prec,Range(dr)=",i5,1x,i5)')PRECISION(dr),RANGE(dr)

END PROGRAM Display_Type_Kinds

Huge(bi)= 127 9
Huge(si)= 32767 9999
Huge(li)=2147483647 99999999

Prec,Range(sr)= 6 37
Prec,Range(dr)= 15 307

This is how you type literal
constants

December, 2008Fortran95/2003 Seminar Series. 1: Introduction 11

Kind types - Literal constants(1)
• Always use the kind type when defining and

assigning real literal constants. If we have a double
precision kind type “dp”,

• The “_dp” suffix on the literal constants ensures the
constant has the same precision as its data type.
Doing something like,

g_per_kg = 8.754
assigns a single precision constant to a double
precision variable. To be consistent, do

g_per_kg = 8.754_dp

REAL(dp), PARAMETER :: MW_DRYAIR = 28.9648_dp

REAL(dp) :: g_per_g, g_per_kg
g_per_g = 1.0e-03 _dp * g_per_kg

December, 2008Fortran95/2003 Seminar Series. 1: Introduction 12

Kind types - Literal constants(2)
PROGRAM Display_Literals
USE Type_Kinds
IMPLICIT NONE
REAL(Double) :: var1, var2, var3
var1 = 10.0_Double
var2 = 3.1415927 * var1
var3 = 3.1415927_Double * var1
WRITE(*,'("var2 = ",f19.15)')var2
WRITE(*,'("var3 = ",f19.15)')var3

END PROGRAM Display_Literals

$:~/Fortran/Type_Kinds $ gfortran -c Type_Kinds.f90
$:~/Fortran/Type_Kinds $ gfortran Display_Literals.f90
$:~/Fortran/Type_Kinds $ a.out
var2 = 31.415927410125732
var3 = 31.415927000000000

The difference is
one literal is typed,
the other is not

The precision of the result is dependent on the precision
of the literal, regardless of all the type declarations.

December, 2008Fortran95/2003 Seminar Series. 1: Introduction 13

Attributes

• Attributes are properties that can be specified for an
object (variable, argument, function, etc)

• There are 12 attributes in Fortran95. Fortran2003
adds 5 more.

• Some attributes in Fortran95 are carried over from
FORTRAN77 statements
– DIMENSION, EXTERNAL, INTRINSIC, PARAMETER,

and SAVE
• We’ll look at some “old” attributes but using new

syntax, and then cover new attributes.

December, 2008Fortran95/2003 Seminar Series. 1: Introduction 14

Attributes - “Old”
• PARAMETER. FORTRAN77 syntax:

INTEGER N
PARAMETER (N=10)

Fortran95 syntax:
INTEGER, PARAMETER :: N=10

• SAVE. Same syntax change as for parameters:
INTEGER, SAVE :: my_int

Important: initialisation implies save!
INTEGER :: my_int = 0

This declaration is equivalent to:
INTEGER, SAVE :: my_int = 0

Double colon required for
inline attribute specification

Required for
initialisation

December, 2008Fortran95/2003 Seminar Series. 1: Introduction 15

Attributes - Allocatable(1)
• ALLOCATABLE. Fortran finally has dynamic storage

allocation! Type declaration example,
REAL, ALLOCATABLE :: x(:,:)

– Allocation via the ALLOCATE statement…
ALLOCATE(x(N,N),STAT=alloc_stat)

– …and deallocation via the obvious,
DEALLOCATE(x,STAT=alloc_stat)

Deferred shape
specifies rank.

Allocation error if ≠

0. Please use.

Fortran95 standard stipulates that local
allocatable

arrays are deallocated

upon exit. Fortran90 does not!

December, 2008Fortran95/2003 Seminar Series. 1: Introduction 16

Attributes - Allocatable(2)

• An allocatable array has both a definition status and
an allocation status.
– Definition status is the same as for other objects and

depends on whether the object has had its value
established. In general, objects start their lives in an
undefined state.

– Allocation status lets you know whether an allocatable
array is or is not allocated. This can be determined with a
new intrinsic function like so,
IF (ALLOCATED(x)) THEN…

The allocation status of an allocatable array is never
undefined.

Remember this!

December, 2008Fortran95/2003 Seminar Series. 1: Introduction 17

Attributes - Target
• TARGET. Indicates the variable (or argument) can be

pointed to by a Fortran pointer. Type declaration
example,
REAL, TARGET :: x(N,N), y(N)

• Why require this?
– To provide compilers with information that can be utilised

to produce efficient code.
– Also makes clear the intent of the programmer that the

variables/arguments in question can be aliased.

• You cannot access a variable/argument via a pointer
unless it has the TARGET attribute.

December, 2008Fortran95/2003 Seminar Series. 1: Introduction 18

Attributes - Pointer(1)
• POINTER. Now easier to shoot oneself in the foot in

Fortran too! (Just kidding).

• Fundamental differences between Fortran pointers
and those of other languages.
– There is no mechanism for indicating that a pointer to one

data type is to be treated as if it were a pointer to different
data type.

– No generic pointer type.
– No pointer arithmetic.

December, 2008Fortran95/2003 Seminar Series. 1: Introduction 19

Attributes - Pointer(2)
• Type declaration example,

REAL, POINTER :: ptr(:)

– ptr can only point to rank-1 real arrays, e.g.
REAL, TARGET :: x(N,N), y(N)
ptr=>x(:,1)
ptr=>y

– Can also allocate new space directly, e.g.
ALLOCATE(ptr(N),STAT=alloc_stat)

Fortran90 does not
have this capability!

This is very important. You
should always do this!

=>NULL()

December, 2008Fortran95/2003 Seminar Series. 1: Introduction 20

Attributes - Pointer(3)

• Similar to allocatables, a pointer has both a definition
status and an association status.
– Association status lets you know whether a pointer is or is

not associated with a target. This can be determined with a
new intrinsic function like so,
IF (ASSOCIATED(ptr)) THEN…

• Unless you initialise the pointer, the association
status is undefined.

• In this case, it is illegal to query the association status
of the pointer.

December, 2008Fortran95/2003 Seminar Series. 1: Introduction 21

Attributes - Pointer(4)
• Important: a pointer with no initialisation,

REAL, POINTER :: ptr(:)

means its association status is undefined.

• In this case, testing its association status is illegal,
IF (ASSOCIATED(ptr)) THEN…

• You should either initialise in the declaration as
shown before, or immediately after by using
NULLIFY(ptr) [Fortran90/95/2003]

or
ptr=>NULL() [Fortran95/2003 only]

=>NULL()
Always
do this!

December, 2008Fortran95/2003 Seminar Series. 1: Introduction 22

Attributes - Intent
• INTENT. Allows programmer to explicitly state

whether subprogram arguments are input, output, or
both. Good self-documentation.

• Subprogram example,
SUBROUTINE mysub(a,b,x,y)
REAL, INTENT(IN) :: a,b
REAL, INTENT(IN OUT) :: x
REAL, INTENT(OUT) :: y

– You cannot change the value of the “a“ and “b“ dummy
arguments in mysub().

– Any value the actual argument “y“ had prior to calling
mysub() is lost - assignment is expected.

December, 2008Fortran95/2003 Seminar Series. 1: Introduction 23

Attributes - Optional(1)
• OPTIONAL. Allows programmer to specify dummy

arguments as optional.

• Subprogram example,
SUBROUTINE mysub(a,b,x,c)
REAL, INTENT(IN) :: a,b
REAL, INTENT(OUT) :: x
REAL, OPTIONAL, INTENT(IN) :: c

– You can test if the actual argument was passed using a new
intrinsic,
IF (PRESENT(c)) THEN…

December, 2008Fortran95/2003 Seminar Series. 1: Introduction 24

Attributes - Optional(2)

• There is no mechanism for specifying a default value
for an omitted argument. Use a local variable,

SUBROUTINE mysub(…other arguments…,c)
REAL, OPTIONAL, INTENT(IN) :: c
REAL :: c_local
…
IF (PRESENT(c)) THEN
c_local = c

ELSE
c_local = default value

END IF

December, 2008Fortran95/2003 Seminar Series. 1: Introduction 25

Attributes - Optional(3)

• Recommended to use keyword arguments in calls to
distinguish mandatory and optional arguments,

CALL mysub(a,b,x,c=c)

If the convention is adopted, then the calling
statement indicates which arguments are optional.

• Explicit interface is required.
– Use of optional attribute for dummy argument.
– Use of keyword form in passing actual arguments

We’ll cover interfaces later on.

December, 2008Fortran95/2003 Seminar Series. 1: Introduction 26

Attributes - Accessibility
• These attributes control accessibility of entities (type

definitions, variables, procedures, parameters) and
are inherently related to the use of modules so I’ll
only mention them briefly - we’ll look more closely
at them when we cover modules.

• PUBLIC. The default. Declares module entities are
accessible outside the module via use association.

• PRIVATE. Prevents access of entities outside a
module by use association.

December, 2008Fortran95/2003 Seminar Series. 1: Introduction 27

Attributes - Fortran2003
• ASYNCHRONOUS. Specifies a variable may be used

in asynchronous I/O. Used to facilitate compiler
optimisation.

• BIND(C). Pertains to interoperability with the C
language.

• PROTECTED. Allows a module variable to be visible
(i.e. not private), but not definable outside the
module.

• VALUE. Specifies a form of argument association for
dummy arguments.

• VOLATILE. Specifies a variable may be used or
modified by means not specified in the program. E.g.
if some other program modifies shared memory.

December, 2008Fortran95/2003 Seminar Series. 1: Introduction 28

Derived Types

• More commonly known as structures. Also referred
to as user defined types.

• Defined within a TYPE…END TYPE construct.
• May contain any combination of intrinsic or derived

type components.
• Limitations on component attributes:

– Only POINTER or DIMENSION attributes allowed.
– Fortran2003 (or TR15881 compliant) compiler allows the
ALLOCATABLE attribute.

• Fortran2003 also greatly increases the utility of
derived types for OOP. We’ll cover those changes in
a later seminar.

December, 2008Fortran95/2003 Seminar Series. 1: Introduction 29

Derived Types - Simple Example

TYPE :: whereami_type
REAL(rk) :: lat
REAL(rk) :: lon
REAL(rk) :: alt
TYPE(date_type) :: date
CHARACTER(80) :: location

END TYPE whereami_type

Give your type a name. Note: my personal style is to
append “_type”

so I know it’s a derived type name.

The components

Other derived
types can be
components

Naming the END TYPE is not mandatory, but recommended
(e.g. if you have scripts for creating documentation)

December, 2008Fortran95/2003 Seminar Series. 1: Introduction 30

Derived Types - Assignment(1)

• Can assign to a derived type two ways:
– Regular assignment
TYPE(whereami_type) :: x
x%lat = 38.89_rk
x%lon = 77.02_rk
x%alt = 6.1_rk
x%date%year = 2008
x%date%month = 12
x%date%day = 4
x%location = “Washington, DC”

The component selector is “%”. Many other languages use “.”
 Why not Fortran? Think about .AND., .OR., .NOT., etc.

Structure components are
referenced recursively.

December, 2008Fortran95/2003 Seminar Series. 1: Introduction 31

Derived Types - Assignment(2)
– Structure constructors

x = whereami_type(38.89_rk,&
77.02_rk,&
6.1_rk,&
date_type(2008,12,4),&
“Washington, DC”)

The derived type name

The sequence of component values.
Must agree in number and order.

An embedded constructor.

December, 2008Fortran95/2003 Seminar Series. 1: Introduction 32

Derived Types - Parameters

• A structure constructor is how you specify a derived
type parameter,

TYPE(whereami_type), PARAMETER :: x = &
whereami_type(38.89_rk,&

77.02_rk,&
6.1_rk,&
date_type(2008,12,4),&
“Washington, DC”)

December, 2008Fortran95/2003 Seminar Series. 1: Introduction 33

Derived Types - Default Init(1)

• Default initialisation of our simple structure,

TYPE :: whereami_type
REAL(rk) :: lat = -999.0_rk
REAL(rk) :: lon = -999.0_rk
REAL(rk) :: alt = -999.0_rk
CHARACTER(80) :: location = “”
TYPE(date_type) :: date = date_type(0,0,0)

END TYPE whereami_type

Note that this initialisation

overrides any default initialisation

in
the date_type definition. The “highest level”

initialisation

wins.

December, 2008Fortran95/2003 Seminar Series. 1: Introduction 34

Derived Types - Default Init(2)
• Warning #1. Keep dummy argument INTENT in

mind.
– Let’s say we had a subroutine interface like so
SUBROUTINE get_map(x)

TYPE(whereami_type), INTENT(OUT) :: x

– Everytime get_map() is called, x is reinitialised to its
default value because of the INTENT(OUT) attribute of
the dummy argument.

– For arrays, or large structures, this can be expensive. Not
dangerous, just expensive.

December, 2008Fortran95/2003 Seminar Series. 1: Introduction 35

Derived Types - Default Init(3)
• Warning #2. Keep dummy argument INTENT in

mind. (Sound familiar?)
– Let’s say we have the derived type

TYPE :: ptr_type
REAL(rk), POINTER :: p(:)=>NULL()

END TYPE ptr_type

– And let’s allocate an instance,
TYPE(ptr_type) :: ptr
ALLOCATE(ptr%p(100000))

– And let’s use it in this subroutine,
SUBROUTINE futz_ptr(ptr)

TYPE(ptr_type), INTENT(OUT) :: ptr

– What will happen?

ptr is reinitialised, so
our allocated memory
is no longer reachable.

Memory leak!

December, 2008Fortran95/2003 Seminar Series. 1: Introduction 36

Derived Types - Example 2
TYPE :: CRTM_Atmosphere_type

! Dimension values
INTEGER :: n_Layers = 0 ! K dimension
INTEGER :: n_Absorbers = 0 ! J dimension
INTEGER :: n_Clouds = 0 ! Nc dimension
INTEGER :: n_Aerosols = 0 ! Na dimension
! Number of added layers
INTEGER :: n_Added_Layers = 0
! Climatology model associated with the profile
INTEGER :: Climatology = INVALID_MODEL
! Absorber ID and units
INTEGER, POINTER :: Absorber_ID(:) => NULL() ! J
INTEGER, POINTER :: Absorber_Units(:) => NULL() ! J
! Profile LEVEL and LAYER quantities
REAL(fp), POINTER :: Level_Pressure(:) => NULL() ! 0:K
REAL(fp), POINTER :: Pressure(:) => NULL() ! K
REAL(fp), POINTER :: Temperature(:) => NULL() ! K
REAL(fp), POINTER :: Absorber(:,:) => NULL() ! K x J
! Clouds associated with each profile
TYPE(CRTM_Cloud_type), POINTER :: Cloud(:) => NULL() ! Nc
! Aerosols associated with each profile
TYPE(CRTM_Aerosol_type), POINTER :: Aerosol(:) => NULL() ! Na

END TYPE CRTM_Atmosphere_type

TYPE :: CRTM_Cloud_type
! Dimension values
INTEGER :: n_Layers = 0 ! K dimension.
! Number of added layers
INTEGER :: n_Added_Layers = 0
! Cloud type
INTEGER :: Type = NO_CLOUD
! Cloud state variables
REAL(fp), POINTER :: Effective_Radius(:) => NULL() ! K
REAL(fp), POINTER :: Effective_Variance(:) => NULL() ! K
REAL(fp), POINTER :: Water_Content(:) => NULL() ! K

END TYPE CRTM_Cloud_type

TYPE :: CRTM_Aerosol_type
! Dimensions
INTEGER :: n_Layers = 0 ! K dimension
! Number of added layers
INTEGER :: n_Added_Layers = 0
! Aerosol type
INTEGER :: Type = NO_AEROSOL
! Aerosol state variables
REAL(fp), POINTER :: Effective_Radius(:) => NULL() ! K
REAL(fp), POINTER :: Concentration(:) => NULL() ! K

END TYPE CRTM_Aerosol_type

December, 2008Fortran95/2003 Seminar Series. 1: Introduction 37

Derived Types - Example 3
TYPE :: CRTM_CSVariables_type

PRIVATE
! The interpolation data
TYPE(CSinterp_type) :: csi(MAX_N_LAYERS, MAX_N_CLOUDS)
! The interpolation result
REAL(fp), DIMENSION(MAX_N_LAYERS, MAX_N_CLOUDS) :: ke
REAL(fp), DIMENSION(MAX_N_LAYERS, MAX_N_CLOUDS) :: w
REAL(fp), DIMENSION(MAX_N_LAYERS, MAX_N_CLOUDS) :: g
REAL(fp), DIMENSION(0:MAX_N_LEGENDRE_TERMS,&

MAX_N_PHASE_ELEMENTS, &
MAX_N_LAYERS, &
MAX_N_CLOUDS) :: pcoeff

! The accumulated volume scattering coefficient
REAL(fp), DIMENSION(MAX_N_LAYERS) :: Total_bs

END TYPE CRTM_CSVariables_type

TYPE :: CSinterp_type
! The interpolating polynomials
TYPE(LPoly_type) :: wlp, xlp, ylp
! The LUT interpolation indices
INTEGER :: i1, i2, j1, j2, k1, k2
! The LUT interpolation boundary check
LOGICAL :: f_outbound, r_outbound, t_outbound
! The interpolation input
REAL(fp) :: f_int, r_int, t_int
! The data to be interpolated
REAL(fp) :: f(NPTS), r(NPTS), t(NPTS)

END TYPE CSinterp_type

TYPE :: LPoly_type
INTEGER :: Order=ORDER
INTEGER :: nPts =NPOLY_PTS
! Left and right side polynomials
REAL(fp) :: lp_left(NPOLY_PTS) = ZERO
REAL(fp) :: lp_right(NPOLY_PTS) = ZERO
! Left and right side weighting factors
REAL(fp) :: w_left = ZERO
REAL(fp) :: w_right = ZERO
! Polynomial numerator differences
REAL(fp) :: dxi_left(NPOLY_PTS) = ZERO
REAL(fp) :: dxi_right(NPOLY_PTS) = ZERO
! Polynomial denominator differences
REAL(fp) :: dx_left(NPOLY_PTS) = ZERO
REAL(fp) :: dx_right(NPOLY_PTS) = ZERO

END TYPE LPoly_type

December, 2008Fortran95/2003 Seminar Series. 1: Introduction 38

Array Syntax (1)
• Array syntax has been available since Fortran90. Many

powerful, and convenient, features.

• Array constructors.
REAL :: x(4)=(/3.7,4.6,7.2,6.9/) [f90/95/2003]
INTEGER :: j(N)=[(i*2,i=1,N)]

[f2003 only]

• Subscript triplets specify array sections.
– Backwards access, j(N:1:-1)
– Every other element, j(1:N:2)
– Elements are optional, j(4:N-3),j(4:),j(:N-1)

• Vector Subscripts.
If k=(/7,4,10/), then j(k)≡(/14,8,20/)

December, 2008Fortran95/2003 Seminar Series. 1: Introduction 39

Array Syntax (2)
• This is a pet peeve of mine. Given an array,

REAL :: x(N)

that will be assigned a value, some people
recommend,
x(:)=1.0

rather than
x=1.0

with the idea that the “(:)” indicates to readers that
“x” is an array.

• But, x(:) is an array section, an expression, derived
from the actual array, x.

• 99.99% of the time it probably doesn’t matter, but
just remember they are not the same thing.

December, 2008Fortran95/2003 Seminar Series. 1: Introduction 40

Summary

• What we’ve looked at
– Kind types and how to use them.
– Attributes in type definitions.
– Derived type definitions.
– Quick look at array syntax.

• What to do with this information?
– Apply it to new code (if it ain’t broke…), or
– Refactor old code (let me tell you about unit testing…)

• Was the information useful? What would you like to
see in any future Fortran seminars? Volunteers?
– Let me know: paul.vandelst@noaa.gov

December, 2008Fortran95/2003 Seminar Series. 1: Introduction 41

Next Time

• Concept of scope
• Interfaces

– Difference between explicit and implicit interfaces
• Modules

– Create your own generic procedures
– Create your own operators

• Block constructs
• Input and output processing

December, 2008Fortran95/2003 Seminar Series. 1: Introduction 42

Where to Get More Information

• EMC Fortran Forum. Post questions, and/or
discoveries. It’s not too helpful for non-NCEP folks
without VPN so maybe setup similar on library
website?
Forum for
language
issues.

Forum for
compiler and
compilation
issues.

December, 2008Fortran95/2003 Seminar Series. 1: Introduction 43

Where to Get More Information

• Many online guides.
– Google is your friend.

• comp.lang.fortran newsgroup.
– Many members of the current and past standards

committee, and some compiler vendors, frequent it.
• Books!

– The ones below I use almost daily.

	Fortran95 and Fortran2003
	Introduction
	Overview
	Kind types
	Kind types - Integer
	Kind types - Real
	Kind types - Portability issues
	Kind types - the Module
	Kind types – USEing the Module
	Kind types – USEing the Module
	Kind types - Literal constants(1)
	Kind types - Literal constants(2)
	Attributes
	Attributes - “Old”
	Attributes - Allocatable(1)
	Attributes - Allocatable(2)
	Attributes - Target
	Attributes - Pointer(1)
	Attributes - Pointer(2)
	Attributes - Pointer(3)
	Attributes - Pointer(4)
	Attributes - Intent
	Attributes - Optional(1)
	Attributes - Optional(2)
	Attributes - Optional(3)
	Attributes - Accessibility
	Attributes - Fortran2003
	Derived Types
	Derived Types - Simple Example
	Derived Types - Assignment(1)
	Derived Types - Assignment(2)
	Derived Types - Parameters
	Derived Types - Default Init(1)
	Derived Types - Default Init(2)
	Derived Types - Default Init(3)
	Derived Types - Example 2
	Derived Types - Example 3
	Array Syntax (1)
	Array Syntax (2)
	Summary
	Next Time
	Where to Get More Information
	Where to Get More Information

