
Paul van Delst

Betty Petersen Memorial Library
Technical Seminar Series

(Re)Introduction to Subversion

(Re)Introduction to Subversion March, 2009 2

Introduction
• The goal of this seminar is to

– Introduce new users to version control concepts in the context of
subversion.

– Describe the typical features of subversion, and how you might use them
in a regular work day.

– Discuss how we can use this tool to simplify, change, or adapt how we
typically manage our software.

• What is your experience with subversion, or version control in
general?

• What do you want to know about subversion, or version control?

(Re)Introduction to Subversion March, 2009 3

Outline
• What is subversion? What it is not.
• Version control in the WWB.
• Basic organisation: trunk, branches, and tags
• Revision numbering
• Basic Capabilities

– Importing, checking out, editing and updating files
– Checking the status of files
– Adding and deleting files
– Renaming and copying files
– Undoing local changes

• Branching and merging
– Undoing committed changes

• Tagging
• Configuration

– Some configuration tips.

(Re)Introduction to Subversion March, 2009 4

What is Subversion?
• Most of the material here is distilled from

http://svnbook.red-bean.com

• What is subversion?
– Subversion is an open source revision control system that allows one or

more users to easily share and maintain collections of files.

• What it is not.
– Magic.
– It is not a substitute for management.
– It is not a substitute for developer communication.

• There is nothing inherently special about subversion. Many other
revision control systems exist.
– Git, Mercurial, darcs, CVS, Perforce, ClearCase, etc.

http://svnbook.red-bean.com/
http://subversion.tigris.org/
http://git-scm.com/
http://www.selenic.com/mercurial/wiki/
http://darcs.net/
http://savannah.nongnu.org/projects/cvs/
http://www.perforce.com/
http://www-01.ibm.com/software/awdtools/clearcase/

(Re)Introduction to Subversion March, 2009 5

Version control in the WWB (1)
• NCEP/EMC repository is located at

https://svn.ncep.noaa.gov/emc

The vapor mirror (read-only!) is located at
file:///gpfs/v/svn/emc

(These locations will change very soon, so parameterise them!)

• NESDIS/STAR researchers use subversion to manage the
Microwave Integrated Retrieval System (MIRS) software. Their
repository is located at

/net/backup/backup

on their network.

• NCEP/CPC is planning to use subversion to manage the FET
project,

http://fet.hwr.arizona.edu/ForecastEvaluationTool

an interactive web tool to evaluate historical skill of long range
forecasts.

https://svn.ncep.noaa.gov/emc
http://mirs.nesdis.noaa.gov/

(Re)Introduction to Subversion March, 2009 6

Version control in the WWB (2)
• Not everyone uses subversion for version control

• NESDIS/STAR IOSSPDT (don’t ask me what that stands for…. the
group includes Walter Wolf and Co) researchers use ClearCase to
manage their software.
– NPOESS related software
– GOES-R related software

(Re)Introduction to Subversion March, 2009 7

Basic organisation
• Recommended repository layout has three main directories:

– trunk
– branches
– tags

• trunk
– The main line of development.
– Typically always in an “almost ready for release” state.

• branches
– This is where non-trivial development is done.
– Experimental development branch names: EXP-desc
– Release branch name: RB-rel

• tags
– This is where snapshots and releases go.
– Snapshots: name.revnum.YYYY-MM-DD
– Code releases: REL-rel
– No development (otherwise it would be a branch)

(Re)Introduction to Subversion March, 2009 8

Example: CRTM Project

(Re)Introduction to Subversion March, 2009 9

Example: CRTM Project branches

(Re)Introduction to Subversion March, 2009 10

Example: CRTM Project tags

(Re)Introduction to Subversion March, 2009 11

Revision Numbering

• When a subversion repository is created it starts at revision 0.

• Each subsequent commit increments the revision number by 1.

• Unlike CVS, the revision number is repository-wide so any commit
increments the revision number.
– Not a big deal; just don’t be surprised when you get back from vacation and

find an update to your working copy is 100’s of revisions beyond where you
left it – even if the code in that directory was not changed.

• Typically, don’t worry about the revision number value.
– BUT: for some operations, like merging, keeping track of revision numbers is

helpful.

(Re)Introduction to Subversion March, 2009 12

• Importing a new project into the repository, let’s call it projX. First,
move to the location of your un(sub)versioned code
$ cd $HOME/projects
$ ls
projX projY projZ

• Then, use the svn import command
$ svn import –m “New src” projX

https://svn.ncep.noaa.gov/emc/X/trunk

• Directory hierarchy projX imported into emc/X/trunk in the
repository.

• Log message
– The –m “New src” option sets the log message for this import.
– Without it the default editor (usually emacs) is invoked to allow you to

interactively enter a log message.

Basic Capability - Importing Files

(Re)Introduction to Subversion March, 2009 13

• The previous import does not place the local projX hierarchy under
version control.

• To get a local versioned hierarchy you need to obtain a working copy.
Also known as a sandbox.

• Move to where you want to create your workspace
$ cd $HOME/workspace

• Then, use the svn checkout command
$ svn checkout https://svn.ncep.noaa.gov/emc/X/trunk projX

• Additional projects can also be checked out,
$ svn checkout https://svn.ncep.noaa.gov/emc/crtm/trunk CRTM
$ svn checkout https://svn.ncep.noaa.gov/emc/gsi/trunk GSI
$ ls
CRTM GSI projX

Basic Capability - Checking Out Files (1)

(Re)Introduction to Subversion March, 2009 14

• In your working copy directory, you may notice there is a hidden
directory named .svn present.

• This is where Subversion stores internal information, and you should
not modify any of its contents.

• When you have successfully checked out your project into your
workspace, you should consider deleting the original sources.

• You then won’t be tempted to edit these unversioned sources and
bypass Subversion.

Basic Capability - Checking Out Files (2)

(Re)Introduction to Subversion March, 2009 15

• Once you have created a working copy of your project(s)....

• Edit, compile, debug, and test as usual.

• The files are the same as when they were unversioned.

Editing files

(Re)Introduction to Subversion March, 2009 16

• You’re happy with changes you’ve made to code, and you want to
commit them to the repository.

• What if another user has changed and committed the same file(s)?
– This is where developer communication is important

• Subversion handles this by requiring you to update your working copy
to the current repository version before you can commit.

• Do this via the svn update command
$ svn update hello.f90
U hello.f90
Updated to revision 1356.

• This merges any changes (assuming no conflicts) in the repository into
your working copy.

Basic Capability - Updating Files

(Re)Introduction to Subversion March, 2009 17

• What if your svn update command produces this
$ svn update hello.f90
C hello.f90
Updated to revision 1356.

• Look at a file listing
$ ls hello.f90*
hello.f90 hello.f90.mine hello.f90.r1274 hello.f90.r1356

What if there is a conflict?

(Re)Introduction to Subversion March, 2009 18

• What if your svn update command produces this
$ svn update hello.f90
C hello.f90
Updated to revision 1356.

• Look at a file listing
$ ls hello.f90*
hello.f90 hello.f90.mine hello.f90.r1274 hello.f90.r1356

This is the merged file containing conflict markers
to highlight the conflicted areas.

What if there is a conflict?

(Re)Introduction to Subversion March, 2009 19

• What if your svn update command produces this
$ svn update hello.f90
C hello.f90
Updated to revision 1356.

• Look at a file listing
$ ls hello.f90*
hello.f90 hello.f90.mine hello.f90.r1274 hello.f90.r1356

This is your working copy file with your local edits as it
existed before the update. No conflict markers.

What if there is a conflict?

(Re)Introduction to Subversion March, 2009 20

• What if your svn update command produces this
$ svn update hello.f90
C hello.f90
Updated to revision 1356.

• Look at a file listing
$ ls hello.f90*
hello.f90 hello.f90.mine hello.f90.r1274 hello.f90.r1356

This is the file that you checked out before you made
your local edits. The “BASE” revision.

What if there is a conflict?

(Re)Introduction to Subversion March, 2009 21

• What if your svn update command produces this
$ svn update hello.f90
C hello.f90
Updated to revision 1356.

• Look at a file listing
$ ls hello.f90*
hello.f90 hello.f90.mine hello.f90.r1274 hello.f90.r1356

This is the file that Subversion got from the server when
you updated your working copy. The “HEAD” revision

What if there is a conflict?

(Re)Introduction to Subversion March, 2009 22

• What if your svn update command produces this
$ svn update hello.f90
C hello.f90
Updated to revision 1356.

• Look at a file listing
$ ls hello.f90*
hello.f90 hello.f90.mine hello.f90.r1274 hello.f90.r1356

• How to resolve?
– Merge the conflicted text by hand.
– Copy one of the temporary files on top of your working file.
– Run svn revert hello.f90 to throw away all your local changes.

• Run svn resolved. This will tell Subversion you have resolved the
conflict. Subversion will not overwrite local changes unless you
explicitly tell it to do so.

What if there is a conflict?

(Re)Introduction to Subversion March, 2009 23

• Now your working copy is up to date, commit your changes to the
repository using the svn commit command
$ svn commit hello.f90
<Enter log message>
Sending hello.f90
Transmitting file data
Committed revision 1357.

• Subversion will start an editor allowing you to enter a log message that
describes the change.
– A good log message briefly describes not just what the change was, but why

the change was made.
– Recommend users follow GNU Change Log format so the subversion logs can

be used to construct ChangeLog files.

• When you exit the editor, Subversion will commit your changes to the
repository, where they will become visible to all users.

Basic Capability - Committing Files

(Re)Introduction to Subversion March, 2009 24

• To determine what files are up to date and which have been locally
modified in your working copy, use the svn status command
$ svn status

• Note that this form only indicates locally modified items; what you
have changed since your last update. The repository is not accessed.

• To indicate which items in your working copy are out of date, the -u
(or --show-updates) switch should be used
$ svn status –u

• If there is no output, then everything is up to date.

Basic Capability - File Status (1)

(Re)Introduction to Subversion March, 2009 25

• To view the commit log messages for an item, use the svn log
command
$ svn log hello.f90

• To see the differences (if any) between your working copy of a file and
the version of the file since your last update (the “BASE” revision), use
the svn diff command
$ svn diff hello.f90

If there is no output, there are no differences.

Basic Capability - File Status (2)

(Re)Introduction to Subversion March, 2009 26

• When you create a new file, or include an already existing one, in your
working copy, it remains local until you commit it to the repository.

• Before you can commit, you must schedule the file for addition using
the svn add command
$ svn add newfile.f90
A newfile.f90

• Now you can commit the file to the repository
$ svn commit –m “Initial commit” newfile.f90
Sending newfile.f90
Transmitting file data
Committed revision 1358.

• If you are adding an entire directory, populate the directory first and
then add the directory – this will work recursively on all its contents.

Basic Capability - Adding Files

(Re)Introduction to Subversion March, 2009 27

• Removing a file from your working copy does not remove it from the
repository.

• Similarly to the add subcommand, you must first schedule the file for
deletion using the svn delete command
$ svn delete oldfile.f90
D oldfile.f90

Note that this also deletes the file from your working copy.

• Now you can commit the file to the repository
$ svn commit –m “Removed file” oldfile.f90
Deleting oldfile.f90
Transmitting file data
Committed revision 1359.

Basic Capability - Deleting Files (1)

(Re)Introduction to Subversion March, 2009 28

• Subsequent updates and checkouts will no longer include deleted
files.

• BUT: specifying a revision number with the update subcommand can
restore older versions of the file
$ svn update –r1358 oldfile.f90
A oldfile.f90
Updated to revision 1358.

• Two very important things to remember:
1) Always use Subversion (not OS) commands to delete files. This

will prevent you from unwittingly deleting a locally modified file.
2) You can always retrieve a deleted file from the repository by

specifying the appropriate revision number to an update.

Basic Capability - Deleting Files (2)

(Re)Introduction to Subversion March, 2009 29

• Subversion provides a shortcut compared to the usual delete-then-add
procedure.

• The svn move command
$ svn move thisfile.f90 thatfile.f90
A thatfile.f90
D thisfile.f90

• Followed, as always, by a commit
$ svn commit –m “Renamed this to that file” thisfile.f90

thatfile.f90
Deleting thisfile.f90
Adding thatfile.f90
Transmitting file data
Committed revision 1360.

Basic Capability - Renaming Files

(Re)Introduction to Subversion March, 2009 30

• This section included to reinforce the point to not use OS commands
to operate on files.

• Use the svn copy command
$ svn copy thatfile.f90 otherfile.f90
A otherfile.f90
$ svn status
A + otherfile.f90

But why use copy? And what does the “+” mean?

Basic Capability - Copying Files

(Re)Introduction to Subversion March, 2009 31

• This section included to reinforce the point to not use OS commands
to operate on files.

• Use the svn copy command
$ svn copy thatfile.f90 otherfile.f90
A otherfile.f90
$ svn status
A + otherfile.f90

But why use copy? And what does the “+” mean?

Using the Subversion command to copy a file preserves
the history of that file.

Basic Capability - Copying Files

(Re)Introduction to Subversion March, 2009 32

• This section included to reinforce the point to not use OS commands
to operate on files.

• Use the svn copy command
$ svn copy thatfile.f90 otherfile.f90
A otherfile.f90
$ svn status
A + otherfile.f90

But why use copy? And what does the “+” mean?

The “+” in the status output indicates that the history is
also scheduled for addition.

Basic Capability - Copying Files

(Re)Introduction to Subversion March, 2009 33

• This section included to reinforce the point to not use OS commands
to operate on files.

• Use the svn copy command
$ svn copy thatfile.f90 otherfile.f90
A otherfile.f90
$ svn status
A + otherfile.f90

But why use copy? And what does the “+” mean?

• Doing the following
$ cp thatfile.f90 otherfile.f90
$ svn add otherfile.f90
A otherfile.f90

means none of the previous history of otherfile.f90 is preserved.
It is a brand new file in the eyes of Subversion.

Basic Capability - Copying Files

(Re)Introduction to Subversion March, 2009 34

• If you haven’t committed, then the svn revert command will undo:
– local edits
– scheduling operations, i.e. files and directories you have scheduled for

addition or deletion.
$ svn status changedfile.f90 addedfile.f90
A addedfile.f90
M changedfile.f90

$ svn revert changedfile.f90 addedfile.f90
Reverted changedfile.f90
Reverted addedfile.f90

• If you supply no targets, the revert subcommand will do nothing.

• To reiterate: You lose the local changes you have made to
changedfile.f90. The BASE revision of the file is what will exist in
your working copy after the revert subcommand is executed.

Basic Capability - Undoing Changes

(Re)Introduction to Subversion March, 2009 35

Branching and Merging (1)

• Recall the main repository structure
– trunk: mainline development.
– branches: non-trivial development.
– tags: NO development.

• Merging branches to and from the trunk is one operation where
keeping track of the revision number(s) is very helpful

• Pre-v1.5 Subversion does not track information about merge
operations, so one could accidentally merge the same change twice
potentially leading to conflicts.

• Developers must manually track merge info.
• Use the commit log message to keep track of the revision number, or

range of revisions, that are being merged.
• Reviewing the svn log output will tell you what changes have already

been merged and allow you to construct subsequent merge
commands.

(Re)Introduction to Subversion March, 2009 36

Branching and Merging (2)

• Ensure your trunk working copy is up to date
$ svn update
At revision 1360.

• Create a branch off the trunk. Let’s call it EXP-MyBranch.
$ svn copy trunk branches/EXP-MyBranch
$ svn commit
EXP-MyBranch branch. Created from r1360.
Adding branches/EXP-MyBranch
Committed revision 1361.

Creating a branch is done via a copy command. There is
nothing inherently “branchy” about a branch – it is a branch
because we say it is so.

(Re)Introduction to Subversion March, 2009 37

Branching and Merging (2)

• Ensure your trunk working copy is up to date
$ svn update
At revision 1360.

• Create a branch off the trunk. Let’s call it EXP-MyBranch.
$ svn copy trunk branches/EXP-MyBranch
$ svn commit
EXP-MyBranch branch. Created from r1360.
Adding branches/EXP-MyBranch
Committed revision 1361.

Identify the revision from which the branch was created in
the log message when you initially commit the branch.

(Re)Introduction to Subversion March, 2009 38

Branching and Merging (2)

• Ensure your trunk working copy is up to date
$ svn update
At revision 1360.

• Create a branch off the trunk. Let’s call it EXP-MyBranch.
$ svn copy trunk branches/EXP-MyBranch
$ svn commit
EXP-MyBranch branch. Created from r1360.
Adding branches/EXP-MyBranch
Committed revision 1361.

• Development proceeds on the branch. Each commit log message for
the branch should begin with the branch name, e.g.
EXP-MyBranch branch.
src:Coefficients/EmisCoeff subdirectory.
* EmisCoeff_Define.f90: <...log message text...>

(Re)Introduction to Subversion March, 2009 39

Branching and Merging (2)

• Ensure your trunk working copy is up to date
$ svn update
At revision 1360.

• Create a branch off the trunk. Let’s call it EXP-MyBranch.
$ svn copy trunk branches/EXP-MyBranch
$ svn commit
EXP-MyBranch branch. Created from r1360.
Adding branches/EXP-MyBranch
Committed revision 1361.

• Development proceeds on the branch. Each commit log message for
the branch should begin with the branch name, e.g.
EXP-MyBranch branch.
src:Coefficients/EmisCoeff subdirectory.
* EmisCoeff_Define.f90: <...log message text...>

First line of log message identifies the branch.

(Re)Introduction to Subversion March, 2009 40

Branching and Merging (2)

• Ensure your trunk working copy is up to date
$ svn update
At revision 1360.

• Create a branch off the trunk. Let’s call it EXP-MyBranch.
$ svn copy trunk branches/EXP-MyBranch
$ svn commit
EXP-MyBranch branch. Created from r1360.
Adding branches/EXP-MyBranch
Committed revision 1361.

• Development proceeds on the branch. Each commit log message for
the branch should begin with the branch name, e.g.
EXP-MyBranch branch.
src:Coefficients/EmisCoeff subdirectory.
* EmisCoeff_Define.f90: <...log message text...>

GNU ChangeLog format adopted for the CRTM.

(Re)Introduction to Subversion March, 2009 41

Branching and Merging (2)

• Ensure your trunk working copy is up to date
$ svn update
At revision 1360.

• Create a branch off the trunk. Let’s call it EXP-MyBranch.
$ svn copy trunk branches/EXP-MyBranch
$ svn commit
EXP-MyBranch branch. Created from r1360.
Adding branches/EXP-MyBranch
Committed revision 1361.

• Development proceeds on the branch. Each commit log message for
the branch should begin with the branch name, e.g.
EXP-MyBranch branch.
src:Coefficients/EmisCoeff subdirectory.
* EmisCoeff_Define.f90: <...log message text...>

• One can then search log message output for all instances of commits to
a particular branch.

(Re)Introduction to Subversion March, 2009 42

Branching and Merging (3)

• Let’s say you’ve finished with EXP-MyBranch development for now.
You’ve tested the final changes and committed them at r1417.

• Now you want to merge your branch into your trunk working copy.

• Remember the revision numbers!
– Branch created at r1361 (check the svn log output if you forgot)
– Branch development ended at r1417.

• Make sure your trunk working copy is “clean”
– No local edits
– Up to date

(Re)Introduction to Subversion March, 2009 43

Branching and Merging (4)

• Use the svn merge command. Preview your merge with the
--dry-run switch
$ svn merge --dry-run -r1361:1417 https://.../EXP-MyBranch

• If the preview is o.k., do the merge and run your tests. Remember, the
merge is local to your working copy since you haven’t committed yet.

(Re)Introduction to Subversion March, 2009 44

Branching and Merging (4)

• Use the svn merge command. Preview your merge with the
--dry-run switch
$ svn merge --dry-run -r1361:1417 https://.../EXP-MyBranch

• If the preview is o.k., do the merge and run your tests. Remember, the
merge is local to your working copy since you haven’t committed yet.

• When you’re ready to commit the trunk merges, indicate the merged
revisions in the log message
Merged EXP-MyBranch changes r1361:1417 into the trunk

Specify the range of revisions included in this merge.

(Re)Introduction to Subversion March, 2009 45

Branching and Merging (4)

• Use the svn merge command. Preview your merge with the
--dry-run switch
$ svn merge --dry-run -r1361:1417 https://.../EXP-MyBranch

• If the preview is o.k., do the merge and run your tests. Remember, the
merge is local to your working copy since you haven’t committed yet.

• When you’re ready to commit the trunk merges, indicate the merged
revisions in the log message
Merged EXP-MyBranch changes r1361:1417 into the trunk

• The log messages now contain a record of what was merged, what
revisions were merged, and what they were merged into (e.g. you could
merge trunk changes into a branch)

• Future EXP-MyBranch merges will start at r1418.

(Re)Introduction to Subversion March, 2009 46

Undoing Committed Changes

• You mistakenly committed and you want to undo.
– This is different from using svn revert before a commit.

• Let’s say you’re at r1480 and you want to get back to r1475 and use
that to continue work.

• Use the svn merge command on your working copy, but with the
revision numbers in reverse order,
$ svn merge -r1480:1475 https://…

• When you’re ready to commit, indicate what you did in the log message
Reverse merged r1480:1475 to undo commits

• The log message for the commit now contains a record of what
revisions were undone.

(Re)Introduction to Subversion March, 2009 47

Tagging

• When you want to take a snapshot of your current development (in trunk
or branch), or create a release, you tag the code inquestion.

• Tag the experimental development with a date. Let’s use the previous
convention and call it EXP-MyBranch.rev1481.2009-03-24
$ pwd
branches/EXP-MyBranch
$ cd ..
$ svn copy EXP-MyBranch tags/EXP-MyBranch.rev1481.2009-03-24
$ svn commit
EXP-MyBranch.rev1481.2009-03-24 tag
Adding tags/EXP-MyBranch.rev1481.2009-03-24
Committed revision 1482.

(Re)Introduction to Subversion March, 2009 48

Tagging

• When you want to take a snapshot of your current development (in trunk
or branch), or create a release, you tag the code inquestion.

• Tag the experimental development with a date. Let’s use the previous
convention and call it EXP-MyBranch.rev1481.2009-03-24
$ pwd
branches/EXP-MyBranch
$ cd ..
$ svn copy EXP-MyBranch tags/EXP-MyBranch.rev1481.2009-03-24
$ svn commit
EXP-MyBranch.rev1481.2009-03-24 tag
Adding tags/EXP-MyBranch.rev1481.2009-03-24
Committed revision 1482.

Change directory so you are in the parent
directory of the branch you want to tag.

(Re)Introduction to Subversion March, 2009 49

Tagging

• When you want to take a snapshot of your current development (in trunk
or branch), or create a release, you tag the code inquestion.

• Tag the experimental development with a date. Let’s use the previous
convention and call it EXP-MyBranch.rev1481.2009-03-24
$ pwd
branches/EXP-MyBranch
$ cd ..
$ svn copy EXP-MyBranch tags/EXP-MyBranch.rev1481.2009-03-24
$ svn commit
EXP-MyBranch.rev1481.2009-03-24 tag
Adding tags/EXP-MyBranch.rev1481.2009-03-24
Committed revision 1482.

Tagging a snapshot or release is also done with the copy
command. Again, we consider this a tag because we say it is.

(Re)Introduction to Subversion March, 2009 50

Tagging

• When you want to take a snapshot of your current development (in trunk
or branch), or create a release, you tag the code inquestion.

• Tag the experimental development with a date. Let’s use the previous
convention and call it EXP-MyBranch.rev1481.2009-03-24
$ pwd
branches/EXP-MyBranch
$ cd ..
$ svn copy EXP-MyBranch tags/EXP-MyBranch.rev1481.2009-03-24
$ svn commit
EXP-MyBranch.rev1481.2009-03-24 tag
Adding tags/EXP-MyBranch.rev1481.2009-03-24
Committed revision 1482.

Put the tag name in the log message when you commit.

(Re)Introduction to Subversion March, 2009 51

Tagging

• When you want to take a snapshot of your current development (in trunk
or branch), or create a release, you tag the code inquestion.

• Tag the experimental development with a date. Let’s use the previous
convention and call it EXP-MyBranch.rev1481.2009-03-24
$ pwd
branches/EXP-MyBranch
$ cd ..
$ svn copy EXP-MyBranch tags/EXP-MyBranch.rev1481.2009-03-24
$ svn commit
EXP-MyBranch.rev1481.2009-03-24 tag
Adding tags/EXP-MyBranch.rev1481.2009-03-24
Committed revision 1482.

• There is no further development on the tagged snapshot.

(Re)Introduction to Subversion March, 2009 52

User Setup of Subversion (Unix only)
• The first time you use subversion (e.g. to checkout code) you will

need to type your password.

• A configuration directory, .subversion, will be created in your
$HOME directory.

• Password may be stored as clear text so ensure configuration
directory is readable only by you:

chmod go-rwx .subversion

or
chmod 700 .subversion

• Default client side behaviour of subversion can be modified via
environment variables or by editing the configuration file, config.

(Re)Introduction to Subversion March, 2009 53

Configuring default behaviour
• Not an exhaustive treatment of .subversion/config changes.
• [helpers] section.

– Uncomment the editor-cmd entry line and set to you editor of choice,
editor-cmd = vi

Emacs is typically the default on linux (IBM may be different). Can also use an
environment variable
export SVN_EDITOR=vi (sh) or setenv SVN_EDITOR vi (csh)

• [miscellany] section.
– Uncomment the global-ignores entry line and modify accordingly,

global-ignores = *.o *.mod <add others as needed>
– Uncomment the enable-auto-props entry line and set it.

enable-auto-props = yes

• [auto-props] section. Only valid if enabled.
– Use to automatically set properties for files when they are committed. For example,

I want keywords to be expanded in my F90/95 source,
*.f90 = svn:keywords=Id Revision

and I want my shell scripts to be executable,
*.sh = svn:executable

(Re)Introduction to Subversion March, 2009 54

Final Comments
• Commit early, and often.

• Branches and tags are cheap, so use them liberally.

• Use Subversion, not operating system, commands to manipulate files in your
working copy. Don’t try to subvert subversion.

• Consider a regular purge of your working copy.

• Subversion can greatly ease the task of managing code development for a
team.

• But, always remember, it does not obviate the need for development team
members to talk to each other.
– Who is working on what?
– What branches are under development?
– When will branches be merged with the trunk? What criteria?

Adopt some sort of convention so no-one is in the dark.

(Re)Introduction to Subversion March, 2009 55

Where to get more information
• EMC Subversion Forum. Post questions, and/or discoveries. It’s not

too helpful for non-NCEP folks without VPN so maybe setup similar on
library website?

Forum for tips that
one discovers via
usage; or how-to
questions

Forum for more
conceptual
questions about
version control

(Re)Introduction to Subversion March, 2009 56

Where to get more information
• The Subversion forum itself, http://svnforum.org, is a great resource.

http://svnforum.org/

(Re)Introduction to Subversion March, 2009 57

Where to get more information
• The Subversion book at http://svnbook.red-bean.com is the

definitive reference. Can also buy print version.
– Make sure the version you are looking at corresponds to the subversion client

version on your machine!

• “Pragmatic Version Control Using Subversion” is available from The
Pragmatic Programmers or Amazon. Not too complicated and has some
good ideas regarding practices.

http://svnbook.red-bean.com/
http://www.pragprog.com/
http://www.pragprog.com/
http://www.pragprog.com/titles/svn2/pragmatic-version-control-using-subversion
http://svnbook.red-bean.com/

(Re)Introduction to Subversion March, 2009 58

Dealing with change
Satir Change Model

1. The group is at a familiar place,
but there may be imbalance
between the group and its
environment.

2. The group confronts a foreign
element that requires a response.

3. The group enters the unknown.
4. The members discover a

transforming idea that shows how
the foreign element can benefit
them.

5. If the change is well conceived
and assimilated, the group and its
environment are in better accord
and performance stabilises at a
higher level.

The impact on group performance of a
well assimilated change during the five
stages of the Satir Change Model.

© stevenmsmith.com

http://www.stevenmsmith.com/my-articles/article/the-satir-change-model.html
http://www.stevenmsmith.com/

(Re)Introduction to Subversion March, 2009 59

The End

Questions?

(Re)Introduction to Subversion March, 2009 60

Extra Slides

(Re)Introduction to Subversion March, 2009 61

Commit Log Message Format

• May seem pedantic, but you can use the subversion logs to create
ChangeLog files. CRTM use GNU ChangeLog format.

• Example log message:
src:Coefficients/EmisCoeff subdirectory.
* EmisCoeff_Define.f90: Added svn:keywords property.
(Clear_EmisCoeff): Removed initialisation of structure dimensions.
(Destroy_EmisCoeff): Added initialisation of structure dimensions.
(Equal_EmisCoeff): Replaced local logical arrays for all-array
value checking with loop over array elements

src:Coefficients/CloudCoeff subdirectory.
* CloudCoeff_Define.f90 (Info_CloudCoeff): Cosmetic changes only.

(Re)Introduction to Subversion March, 2009 62

Commit Log Message Format

• May seem pedantic, but you can use the subversion logs to create
ChangeLog files. CRTM use GNU ChangeLog format.

• Example log message:
src:Coefficients/EmisCoeff subdirectory.
* EmisCoeff_Define.f90: Added svn:keywords property.
(Clear_EmisCoeff): Removed initialisation of structure dimensions.
(Destroy_EmisCoeff): Added initialisation of structure dimensions.
(Equal_EmisCoeff): Replaced local logical arrays for all-array
value checking with loop over array elements

src:Coefficients/CloudCoeff subdirectory.
* CloudCoeff_Define.f90 (Info_CloudCoeff): Cosmetic changes only.

src:Coefficients/EmisCoeff subdirectory.

src:Coefficients/CloudCoeff subdirectory.

Single line detailing the CRTM category (src, fix, scripts, external or
test) and its directory location. Each subdirectory gets its own entry.

(Re)Introduction to Subversion March, 2009 63

Commit Log Message Format

• May seem pedantic, but you can use the subversion logs to create
ChangeLog files. CRTM use GNU ChangeLog format.

• Example log message:
src:Coefficients/EmisCoeff subdirectory.
* EmisCoeff_Define.f90: Added svn:keywords property.
(Clear_EmisCoeff): Removed initialisation of structure dimensions.
(Destroy_EmisCoeff): Added initialisation of structure dimensions.
(Equal_EmisCoeff): Replaced local logical arrays for all-array
value checking with loop over array elements

src:Coefficients/CloudCoeff subdirectory.
* CloudCoeff_Define.f90 (Info_CloudCoeff): Cosmetic changes only.

* EmisCoeff_Define.f90

* CloudCoeff_Define.f90

The log entry should mention every file that has changed.

(Re)Introduction to Subversion March, 2009 64

Commit Log Message Format

• May seem pedantic, but you can use the subversion logs to create
ChangeLog files. CRTM use GNU ChangeLog format.

• Example log message:
src:Coefficients/EmisCoeff subdirectory.
* EmisCoeff_Define.f90: Added svn:keywords property.
(Clear_EmisCoeff): Removed initialisation of structure dimensions.
(Destroy_EmisCoeff): Added initialisation of structure dimensions.
(Equal_EmisCoeff): Replaced local logical arrays for all-array
value checking with loop over array elements

src:Coefficients/CloudCoeff subdirectory.
* CloudCoeff_Define.f90 (Info_CloudCoeff): Cosmetic changes only.

Name all the changed procedures in full. Do not abbreviate
(*_EmisCoeff)

or combine
({Clear,Destroy,Equal}_EmisCoeff)

since then a search for a particular procedure would not find the entry.

(Clear_EmisCoeff)
(Destroy_EmisCoeff)
(Equal_EmisCoeff)

(Info_CloudCoeff)

	(Re)Introduction to Subversion
	Introduction
	Outline
	What is Subversion?
	Version control in the WWB (1)
	Version control in the WWB (2)
	Basic organisation
	Example: CRTM Project
	Example: CRTM Project branches
	Example: CRTM Project tags
	Revision Numbering
	Basic Capability - Importing Files
	Basic Capability - Checking Out Files (1)
	Basic Capability - Checking Out Files (2)
	Editing files
	Basic Capability - Updating Files
	What if there is a conflict?
	What if there is a conflict?
	What if there is a conflict?
	What if there is a conflict?
	What if there is a conflict?
	What if there is a conflict?
	Basic Capability - Committing Files
	Basic Capability - File Status (1)
	Basic Capability - File Status (2)
	Basic Capability - Adding Files
	Basic Capability - Deleting Files (1)
	Basic Capability - Deleting Files (2)
	Basic Capability - Renaming Files
	Basic Capability - Copying Files
	Basic Capability - Copying Files
	Basic Capability - Copying Files
	Basic Capability - Copying Files
	Basic Capability - Undoing Changes
	Branching and Merging (1)
	Branching and Merging (2)
	Branching and Merging (2)
	Branching and Merging (2)
	Branching and Merging (2)
	Branching and Merging (2)
	Branching and Merging (2)
	Branching and Merging (3)
	Branching and Merging (4)
	Branching and Merging (4)
	Branching and Merging (4)
	Undoing Committed Changes
	Tagging
	Tagging
	Tagging
	Tagging
	Tagging
	User Setup of Subversion (Unix only)
	Configuring default behaviour
	Final Comments
	Where to get more information
	Where to get more information
	Where to get more information
	Dealing with change
	The End
	Extra Slides
	Commit Log Message Format
	Commit Log Message Format
	Commit Log Message Format
	Commit Log Message Format

