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1. Introduction

In a recent paper, Asselin [1] has presented an analysis of numerical
time integration methods subjected to a temporal filter as originally pro-
posed by Robert [2]. Asselin's paper is quite compact in its description of
the results of his analysis, which makes its interpretation somewhat difficult.

Prior to the appearance of Asselin's paper, Vanderman [3] had undertaken
a set of numerical experiments utilizing Robert's temporal filter in conjunction
with the explicit, leapfrog method of time integration. To assist in the under-
standing of Vanderman's results, a simple stability analysis of the method as
applied to a one-dimensional wave equation was undertaken. Preliminary results
of this effort were documented in NMC Office Notes 51 and 60. A final analysis
is now complete and this paper is intended to present those results.

Certain points in our analyzis are merely specialized results of Asselints
more complete study; there are included, however, certain points of clarification
which may serve as a supplement to his work.

2. The Analysis

We consider the numerical formulation of the analytic problem posed by
the differential equation,

du = icu (1)
dt

with the initial condition,

u = 1 at t = 0 (2)

Note that i _ All and X is a real constant. The finite difference
approximation of the differential equation combines the centered, second
order accurate, leapfrog method and Robertts temporal filter. This method
may be expressed in two equations

u(n+l) = u(n-l) + 2iwAt u(n) (3a)

u~n) = a u * 0+ ) (u(n (3b)

in which the indices indicate the time level, At is the time step and a
is a constant in the range, (0 to 1). If (3a) and (3b) are manipulated to

eliminate reference to quantities with an asterisk, one may derive the
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expression

(n)
u (n+ l ) - (1 - a + 2ib)u ) - (a- i[l-a]b)u(n 1) = 0 (4)

in which we have used the definition,

b = BAt (5)

Solutions to equation (4) may be obtained in the form

(n) = K n (6)

in which K is a complex constant, n is an integer exponent and C is a
complex quantity satisfying the quadratic expression

2 _ 2B~ - C = 0

derived by inserting (6) into equation (4) and defining

: ; ;B = 2 + ib (8a)

and

C = a - (1-a)ib. (8b)

Clearly, there are two roots of (7) and therefore two solutions of the
form (6),

u(n) n n
u( n )= K + K2 _ (9)

with

1 ~ ~ ~ I~leaa+ ~ 2 : ' 
C= [---+ ib b2 (10)2~~~~~ 2

One may prove that a necessary and sufficient condition for

t

I~+ - 41 < 1 0(1 
is the requirement< ,

l+ct
b = At < (12)

Expression (12) is the linear computational stability criterion.

tAn incorrect condition was given in Office Note 60, because we neglected
the converse of equation (13) in Office Note 60.
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0 ~ The initial value problem posed in equations (1) and (2) cannot be solved
numerically by means of equations (3) alone. One must specify a starting
procedure. The extra condition which arises out of the starting procedure
permits one to fix the extra solution given in (9). We shall now indicate a
specific starting method.

Define u = 1 + Oi (13)

We then have from a forward approximation of equations (3):

u(1 ) = u + imAt u = (1 + isAt) (14a)

(0) = au + 1-a u + u(1)} = 1-a + WAi (14b)u 2 1 +2iwAt (142)

Again using equations (3)

u(2) 0 (_)
u2) = u + 2iwAt u,* (15a)

u(1) = a u() + 2 (u() + u(2)) (15b)
~~+--+u 2 (15b)

Using (14a) and (14b), one has

u(1) = 1- (l-a) (mAt)2 } + (1 + .1-a) 2 )iwAt (16)

Now K1 and K in equation (9) may be determined from (14b), (16) and (10).
One may calculate 

K2 -= x-1 {(x + (l-a)(mAt)2 - (l+a)) + -(l-a)(x - (l-a)) imLt} (17)

and

K1 = 1 + -1 iwAt- K (18)2 2

in which 

X ((l+a)2 - (2wAt)2) (19)

For particular choices of a and wat, the solution of the initial value
problem may be tabulated.
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3. Discussion of Results

We have seen that the solution of the initial value problem consists
of two components. The first component, Kit, is usually termed the physical
mode since the locus of this solution is similar to that of the analytic
solution of the differential equation. The second component of the numerical
solution, K2, is referred to as the "computational mode" because itssolution K 2 , is reerdt s th ropttoa oetbcuse its
behavior is quite different from that of the analytic solution.

In figure 1, we show the locus of the numerical solution of the
initial value problem for two values, .999 and .75, of a for a wave with
analytic frequency w equal to 2/rlRAt). The bulk of the amplitude is in the
physical mode as shown in the diagrams. The computational mode has been
magnified by one order of magnitude in the diagrams. The points are labeled
with integers indicating the number of time steps taken. Analytically, the
wave should go through one complete cycle in the ten steps shown. In both
cases, the wave rotates more rapidly than it would analytically. Note that
the erratic behavior of the computational mode is the result of a regular
negative rotation plus a 180 degree shift at even time steps. When a is set
at .75, one observes a dampening of both modes.

The numerical integration technique discussed in this paper treats
each of the solution's components differently. These differences permit the
selection of the parameter, a, in a manner oriented toward achieving different
objectives at various points in a numerical integration.

Figures 2 and 3 graphically depict the amplification factor and phase
error for various frequencies as a function of the choice of the parameter,
a. The physical mode is damped for all frequencies which are computationally
stable. The computational mode is severely damped. Low frequency waves have
their computational mode damped by the factor a in just one time step. The
computational mode associated with higher frequency oscillations is not
damped as much.

In Asselints paper, the use of several different values of the smoothing
parameter during the calculation of a five day forecast was indicated. In
terms of the parameter a, he used .14 for 36 hrs, .50 for the next 12 hrs,
.80 from 48 to 60 hrs and a = 1.0 for the rest. His calculation was made with
the semi-implicit integration method which has different computational
stability characteristics than the explicit scheme considered in this paper.
However, it may be noted from figure 2 that the choice a =.14 gives maximum
damping of the high frequency physical modes. Continual use of such a value
would however severely damp the low frequency oscillations. This consideration
explains the reason for shifting to larger values of a: later on. The values
of a = .5 and .8 provide significant damping of all the computational modes
with modest damping of the physical modes. The shift to a = 1.0 toward the
end of the forecast period suggests that noise was no longer present in the
fields.
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The linear stability criterion may then be expressed, combining both temporal
and spatial truncation error effects, in the form,

At < (27)
C

With reference to the use of variable a in the forecast calculations,
it should be noted that in an explicit integration the use of a = .14
would require the use of a time step about 6/10 ths of that admissible when
a = 1.0. For a = .5, one must use a time step about 3/4 ths that
admissible with a = 1.0.

We see then that Asselin's selection of a's is efficient as against
the use of an Euler-backward scheme, mainly because of his use of the semi-
implicit rather than the explicit integration method.

4. Conclusions.

The analysis of Robert's time filter scheme for numerical integration
of hyperbolic equations shows that selective damping of high frequency and
computational modes may be achieved at relatively little cost in additional
calculation. The testing of this method in complex numerical weather
prediction models would appear to be desirable. Care must be exercised,
however, to insure that the computational stability criterion is satisfied
throughout the integration. This is particularly the case because the use
of a variable smoothing index, a, appears to be profitable.
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