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1. Introduction

Operational experience with optimum interpolation at NMC and elsewhere

has stimulated close examination of the characteristics of the method.

Some of the questions have arisen out of the basic formulation of the

method; for example, how sensitive is the resulting analysis to variations

in the theoretical forecast error covariance model? Others result from

compromises necessary to implement optimum interpolation on existing

computers for execution within operational deadlines. For example,

computer limitations require restricting the amount of data influencing

the analysis at any point; one can then enquire what the implications of

this are, and what is the proper way to select observations to be used.

At NMC, examination of these aspects of optimum interpolation came

about as a result of questions concerning the method's ability to resolve

relatively small-scale features in atmospheric flow patterns. In the 6-

hour analysis/forecast cycle which constitutes the NMC Global Data

Assimilation System, occasions have been frequently noted in which rapid

cyclogenesis is not adequately represented. Usually, this is manifest by

the 6h predictions of the cyclogenesis being too slow and of insufficient

intensity. The corrections which the optimum interpolation analysis

makes in such cases tend to be localized, of relatively small scale, but

sometimes of considerable amplitude. Maps of these correction fields

display "bullseyes", with horizontal dimensions ranging from about 10

degrees latitude in diameter to about 40 degrees with amplitudes (in the

geopotential field) of more than lOOm in mid-troposphere, in extreme

cases. Figure 1 displays one such example, from a case examined by

Kistler and Parrish (1982).



Early in the operational life of the optimum interpolation system at

NMC, it was noted that such features on the small end of the length scale

range were not analyzed as accurately as those with larger dimensions;

that is, the analyses in such cases did not reflect the data as faithfully

as might be desired. In particular, small-scale features were not analyzed

as small enough in horizontal dimensions, or with enough intensity. To

explore the factors influencing this apparent scale limitation, a series

of one-dimensional analysis simulation experiments was performed.

The next section discusses the design of the experiments, followed

by a discussion of the main results. A summary concludes the note.

e~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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2. Experimental Design.

The characteristics of the analysis model are outlined as follows:

- Analysis grid:

- Data:

- Statistics:

1-dimensional, along latitude 45, with analysis points

at 20 intervals

True convection field specified analytically as a

function of longitude:

27rx
*0 ~ h(x) = Acos L

v(x) = frcosg ah
frcoso ax

Observations composed of true field plus random error
with zero mean and standard deviation E(h), E(V).

32 equally spaced observation points at 2.50 intervals
64 observations total

First guess error covariance model

e-kS2hi- = h2 ekh 2, s = separation distance between
i and j

hivj = g (Fij-)
frcosp ax

.92 9 2 (h-~)j
vivj = f2rcosz (hih)

First guess error standard deviation

oh = 40 m

CF = (If ,r ah

Observational error standard deviation

E(h) = 20 m (in most experiments)

E(v) = [f /fi-] E(h)



To illustrate the problem of scale limitation, the simulated true

correction field was given horizontal dimensions varying from 40° latitude

to 10° latitude with k=lxlO1 6km -2. Figure 2a shows the response of the

analysis to a feature with dimensions of 40° longitude from zero value

to zero value. The solid lines depict the "truth" - that is, the analytic

field- and the dotted lines represent the analysis. Simulated observations

are shown by crosses. In this experiment, all 32 geopotential observations

and 32 wind observations were used in the analysis at every point. It

will be noted that the analyzed geopotential is a close approximation of

the truth, and that the random noise in the data has been eliminated:

the minimum value in the true field, -10Om, is analyzed as -91m, and the

analysis is agreeably smooth.

Figures 2b-2d show the same depiction but with the dimensions of the

true correction field progressively reduced to 25°, 15°, and 100 longitude.

For the 10° case, the minimum analyzed value is only -53m, and the analyzed

dimensions are larger - the wave length is about 22° latitude.

The effort to investigate this behavior included simulation experiments

on:

o multivariate vs. univariate analysis;

o variations in the forecast error covariance model

(k=1,2,4 x 10-6km 2);

o variations in the number of observations used

(5, 8, 10, 20, 64);

o variations in the observational error standard deviations

(E = 20, 10, 5, 2m);

o variations in data selection method

(closest vs. most highly correlated).



3. Results

Univariate vs. Multivariate Analysis.

The first set of experiments was suggested by the work of Lorenc (1981),

who showed an example of the improvement of the mass analysis when 
wind

observations are used to augment the mass observations. Figure 3 displays

the results of the present experiment, for the case of the shortest-length

disturbance (10° longitude). In the univariate analysis, only the 32

mass observations were used in the mass analysis, and only the 32 wind

observations were used in the wind analysis. All 64 reports were used in

both mass and wind analyses in the multivariate case. The experiments

were otherwise identical.

The univariately-analyzed mass field (dashed line) exhibits somewhat

greater distortion than does its multivariate counterpart. The minimum

value analyzed is about -40m in the univariate case, compared to -53m in

the multivariate case, and -lOOm in the analytic "truth". The analyzed

wavelength is also larger in the univariate analysis than in the

multivariate. Virtually no difference was noted in the wind field,

so only the dashed line is included. The entry in Table 1 for these

experiments shows a 3.3m reduction in height analysis error, and a O.lm/s

reduction in wind error in the multivariate compared to the univariate 
analysis.

These results suggest that the mass analysis does indeed benefit

from using wind as well as mass reports, and although it has not been

shown here, the greatest improvement occurred with the smallest scale

perturbation. It is not clear from these experiments that mass data

improved the wind analysis to any appreciable degree.



Variations in the Forecast Error Covariance Model

The shape of the forecast error covariance model is given by the

Gaussian function exp (-ks2 ) where s is the separation distance and k is

a constant which governs how rapidly the correlation curve falls off with

distance. Three values of k were used, and the resulting functions are

displayed in Figure 4: height-height correlations in the upper part and

height-wind in the lower part.

For larger values of k, the correlation curve becomes sharper, and it

would be anticipated that the narrower the function the more easily small-

scale features might be represented. This is confirmed in Figure 5,

showing the results obtained for the three values used, in the case of

the 10° perturbation. It is clear that the narrower correlation function

5.produced a sharper, more accurate response in the analysis as expected.

;The extreme in the mass field decreases from -53m to -78m and the RMS

error (Table 1) declines from 15.4 m to 7.1 m. Similar improvements are

noted in the wind analysis.

This experiment clearly demonstrates the important role of the forecast

error covariance model in determining the scale response of the analysis methods.

Variations in the Number of Observations

As noted in the Introduction, the current computational capabilities

available to NMC require restricting the number of reports used at each

analysis point to no more than 20. The experiment reported in this

section was motivated by two considerations: first, if the n observations

selected (n less than the total available) are those closest to the

analysis point, then the correlation functions displayed in Figure 4 are

effectively truncated, thus becoming narrower and therefore capable of

greater response to small-scale features. On the other hand, a recent



theorem by Phillips (1982) concerning the completeness of multivariate

analysis for the "slow" modes requires as a necessary condition the use

of all available data in the analysis at each analysis point.

The experiment progressively reduced the number of reports used at

each point from the maximum of 64 to 20, 10, and then 5. An intermediate

value of the shape factor k was used: k=2x10-6km-2. In each of the

reduced-data cases, observations were taken in pairs of height and wind,

the closest pair to the analysis point being selected first. Thus, in

the case of 20 reports, the procedure at each analysis point used the-10

closest geopotential reports and the 10 closest wind reports. In the

last experiment (5 reports) both the mass and wind analyses used three

heights and two winds at each analysis point.

Figure 6 displays the results for the 10° disturbance. The

curves for 64 and 20 reports are virtually indistinguishable from each

other; 10 reports produces a slightly more accurate analysis for this

case both for the extreme values and in the RMS sense (Table 1), but

there is clearly substantially more noise apparent, especially in the

flat areas outside the disturbance itself. A further reduction to 5

reports is definitely disadvantageous.

Thus, this set of experiments suggests that attempts to improve the

short-length scale response by greatly reducing the amount of data used

in each analysis point will be attended by unpleasant side effects. This

should not be surprising, given that a reduction in data amounts to a

truncation of the correlation function, with predictable results in the

response. On the other hand, the reduction to 20 reports from 64 produced

no detectable deterioration in the analysis. This suggests that although

Phillips' theorem formally requires all data to be used at each analysis



point, practically it is sufficient to use only those closest to each

analysis point, provided that enough are used to suppress the effects of

random errors. The number required would then depend in part on the

magnitude of the observational errors.

Variations in Observational Error Variances

Optimum interpolation will exactly reflect error-free data located

at analysis points. Therefore, it was thought that the inability to

represent the 10° disturbance as in figure 2d perhaps might be alleviated,

at least in principle, if the analysis model were given error free data,

and told of that fact by setting the observational error variances to zero.

To examine this possibility, the (20m)2 geopotential error variance was

reduced in successive runs to (10m)2, (5m)2, and (2m)2 respectively. An

experiment with error-free data was not possible. The iterative method

used to solve the analysis equations at each point produced erratic

solutions, due to weak diagonal dominance present in the coefficient

matrix when the diagonal terms are not augmented by the observational

error variance. It should also be noted that the data were not relocated

to analysis points so interpolation continued to be required.

Figure 7 displays the results. Clearly, the analysis model attempts

to more closely reflect the data as the error variance is reduced. But

it appears to be approaching a limit asymptotically such that continued

halving of observational would produce a progressively smaller change in

the solution. It would appear that, even with perfect data, the solutions

would still reflect the underestimate of amplitude and overestimate of

length scale evident in Figure 2d, due to the interpolation with a fairly

broad correlation function. No doubt this response could be determined

analytically through information theory, but no attempt has been made to do

so for this note.



Variations in the Method of Data Selection

Given the necessity of using less than the total available data base

at each analysis point, a selection procedure must be developed to identify

those observations which contain the most information about the analysis.

At the inception of the NMC optimum interpolation analysis system, the

decision was made to select those observations which exhibit the highest

correlation with the analysis point, on the grounds that this minimizes

the analysis error variance for each variable. Because the shapes of the

height, u-, and v-correlation functions are quite different from each

other (see Bergman, 1979), observations were selected separately for the

mass, u-, and v-analyses. In general, this means that a different set of

observations may be used in the analysis of each parameter at any point.

In particular, where data of only one type is available - for example,

satellite-derived geopotentials over oceans - an analysis of geopotential

will select those observations which are closest to the analysis point.

Those reports have the highest correlation with the analysis point, as

may be seen in the upper part of Figure (the analysis point being assumed

at the central point) 4. For the wind analysis, however, the most highly

correlated height reports, are those located several degrees of latitude

away, as may be noted from the ZV correlation curves in the lower part

of Figure 4. If the number of data permitted to influence the analysis

are small, then the data sets for the mass and motion analyses may be

completely different. The potential for mass-motion imbalance is evident.

Upon examination of the changes made to analyzed mass and motion

fields, by the normal mode, initialization step in the vicinity of large,

small-scale corrections such as in Figure 1, it became apparent that not only

was the mass correction underestimated by the optimum interpolation



procedure, the initialization step made the situation even worse. This

suggested that the selection procedure, even though minimizing the analysis

error variance, led to wind and mass corrections which were unbalanced; the

imbalance was then resolved by the initialization according to geostrophic

adjustment principles.

The final experiment reported in this note was intended to examine

this problem. Only height observations were used, and only eight reports

at any analysis point. For the mass analysis, the eight most highly

correlated were selected at each point. These are marked with circumscribing

circles for the analysis point at the center of the grid. It should be

noted that the data spacing was decreased to 1.25° for this experiment in

order to amplify the results for easy illustration.

For the wind analysis, the experiment marked "best" in Figure 8

selected the eight most highly correlated height reports with the analyzed

wind at the analysis points. Again, for the center point, these are

marked by circles in the lower part of Figure 8. It will be noted that

these are not the same set selected for the mass analysis.

The dashed curve in the lower part of Figure 8 is the resulting wind

analysis. It is severely distorted, with very small magnitude in general,

and displaying relative maxima where the analytic solution is a minimum

and vice versa. It clearly differs from the geostrophic wind that might

be calculated from the analyzed height correction curve in the upper part

of Figure 8. The analyzed height and wind correction curves thus are

poorly balanced.

Alternatively, if the selection procedure is based on the eight

closest height reports in the height analysis, and the same set is used in

the wind analysis, the dotted curve (marked "closest") in the lower part of



Figure 8 results. It is obviously an underestimate of the analytic wind

correction, reflecting the inability to represent the intensity of small

features and therefore a weaker gradient. But at least the principal

extrema are in approximately correct positions, so that the mass and

motion corrections are much better balanced and less prone to confuse the

initialization procedure.

As a note of passing interest, the upper row of numbers between the

height and wind parts of Figure 8 represents the estimated analysis error

standard deviations at each analysis point for the "best" experiment,

while the lower represents the same parameters for the "closest" experiment.

The former are indeed smaller than the latter, but the actual solutions

of the latter are clearly superior.

IV. Summary

The one-dimensional simulation experiments reported in this note suggest

the following conclusions:

o The scale limitation in optimum interpolation is controlled mostly

by the shape of the covariance model, and to some extent by the quality

of the data.

o For the convariance model in use at NMC (Gaussian, k=10-6km-2), features

in the correction field of scale less than about 20° latitude

will not be represented faithfully.

o For data with random errors, it is important to use enough data to

reduce the effect of errors, but it does not appear necessary to

use all of the data.

o Data selection should result in the same set of observations

being used in both mass and motion analyses.
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Table 1. Summary of one-dimensional analysis simulations, in terms of

RMS errors (exp. minus anlaytic truth).

IMAYEL ENGTh EXPEItPIETS

itivariate, all data, k - I x 10-6 km- 2 , oh a 20 a

an he (a)
3.3

11.3
15.4

MS V (m/s)

1.3
6.5

10.8

UNfIVARIATE VERSUS MULTIVARIATE
100 wavelength, all data, k - 1 x 10- 6 km-2, h 20 E

RP h (!,A a Vw; !4klso

Multivariate
Univariate

15.4

18.7
10.8
10.9

VARIATIONS IN THE COVARIANCE MODEL
10 ° wavelength, miltvariate, all ata, eh - 20 m

m ve (m/s)

10o6 k-2
10-6 km-2
10-6 k-2

15.4
11.4
7.1

10.8
8.7
5.6

L6BER OF OBSERVATIONS
100 wavelength, mltivariate, k * 2 x 10-6 k' 2. eh a 20 m

RS he (M)

11.4
11.0
7.1 

11.5

RN Ve (m/s)

8.7
8.4
5.8
S.4

Exp

A s 401
A 1 0A IsOli

Exp

k lx
k - 2x
k - 4X

Exp

NOBS a 64
NOBS a 20
ROSS - 10
NOBS - 5



Table 1, continued.

OBSERVATIONAL ERROR
10° wavelength, multivariate, k = 1 x 10-6 km- 2

RMS he (m)

15.4
13.8

12.7

12.4

RMS Ve (m/s)

10.8
10.4
9.9
9.8

DATA SELECTION
100 wavelength, multivariate, 8 height obs only,

RMS he (m)

17.8
17.2

k = 1 x 10-6 km - 2

RMS Ve (m/s)

12.1

11.0

Exp

eh = 20 m

eh = 10 mn

eh= 5 m
eh = 2 m

Exp

BEST
CLOSEST



Table 2. Experimental variations and corresponding entries in the legends

of the diagrams.

EXPERIDIETAL VRMATIONS

Variables Parameter
UivaraW or maltivarlate CROSS I WV

CROSS - 0 U/V

Covariance Function
k a I X 10-6 k Z CH 40
k - 2 X 10-6 k- 2 CH - s
k a 4 x l . 2 01 - 60

Nber of Observations

Observational Error E

: Data Selection
eights only CRS - -1

*st highly correlated BEST
_________________f _.0



Figure la. 500-mb geopotential analysis for 12Z
21 October 1979 produced by the NMC
Data Assimilation Cycle. Units are

decameters.

Figure lb. 500-mb geopotential correction (difference
between first guess and analysis) corres-
ponding to (a) Units are meters. (After
Kistler, and Parrish, 1982)
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