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ABSTRACT

Results of a thorough study of the correlation structure of

observation-minus-forecast increments for mandatory pressure

level radiosonde observations of zonal and meridional wind

components and geopotential, differenced with NMC's 6-hour

global forecasts, are reported. Our work focused on the

selection of a representation for spatial lag-correlations

to be used in updating the multivariate statistical

objective analysis algorithm of the global data assimilation

system, with attention given to regional and seasonal

dependence of the correlation structure, and on the degree

to which the increments are in the same geostrophic balance

as the signal and forecast fields individually.

We compare the performance of several candidates for

representing geopotential autocorrelations, on the one hand,

and the auto- and cross-correlations of the wind components,

on the other, for five mandatory pressure levels, for four

regions of the Northern Hemisphere and for the Southern

Hemisphere; and we identify one functional form as optimal

for global objective analysis. The parameters are shown to

vary with level and season. Furthermore, the geopotential

and wind correlation fits have identified important

differences in corresponding parameter values.



A single algorithm which covers the primary candidates in

one fitting operation, for future semi-automatic updating,

has been developed in the course of this work. Results of

its use are presented and discussed. Part 2 will add the

vertical component of three-dimensional correlation

structure, and present analysis and forecast impact test

results of use of this structure in the global optimal

interpolation algorithm.



A detailed study of the correlation structure of

observation-minus-forecast differences of mandatory level

winds and heights has recently been completed at the U. S.

National Meteorological Center (NMC). The two-fold

objective for this was a major update of the wind and height

forecast-error correlation representations used in NMC's

global data assimilation system and the creation of a

routine re-parameterization algorithm. We have achieved

this; and the scope of the data included in our study has

clearly identified a requirement for updating, to keep pace

with seasonal changes in the observed fields and with

changes in f.e. correlation structure brought through

continual advances in the NMC's NWP models.

The work we report here is a global study of isobaric

correlation structure of RAOB-minus-(6 hour) forecast

differences for NMC's global spectral model. In addition to

seeking to establish the best functional form to represent

spatial correlation properties of these forecast variable

increments we addressed correlation parameter questions

pertaining to

a) geopotential structure, namely,

i) regional (dis)similarities,

ii) latitude dependencies, within continental
regions,

iii) variations with pressure, in the vertical,

iv) differences between seasons,
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and

b) wind f.e. structure, principally the question of

whether the geostrophic assumption applied to forecast

errors carries through to provide the optimal para-

meterization for correlations of the wind increments.

In addition to these preset goals, our work provided

additional significant insights regarding marked change in

f.e. correlation structure with change in the forecast

model, and the impact of computing and removing an estimate

of the systematic error of the forecast cycle.

Bergman (1979) had primary responsibility for the

formulation of the multivariate analysis scheme which has

been basic to NMC's global data assimilation system and

which, for a number of years, served as a model for

objective analysis of observation-minus-forecast increments

at major forecast centers of the World. Bergman's scheme

was based on the use of the negative-squared-exponential

function* exp (-ba't) to represent isobaric temperature, and

later geopotential, f.e. correlation as a function of

separation between locations. Auto- and cross-correlations

for wind component f.e.s were derived from this function by

assuming that the forecast errors of U and V are

geostrophically related to geopotential f.e. increments.

................ ....................... .... ...................I...,.................. ............I .............

*Bergman and others referred to this as the "Gaussian

correlation function" because of its similarity to the

density function of K. F. Gauss' error distribution curve.
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During the past few years other forecast centers have

developed alternate models for f.e. correlations, which have

provided improved fits to their indigenous multivariate

correlation structures. For example, see Hollingsworth and

Lonnberg (1986) for the ECMWF, Lorenc (1988) for the U.K.

Met.Office, Goerss (1989) for the US/NEPRF, and Thiebaux,

Mitchell and Shantz (1987) for RPN and the CMC. The basic

functional representations for geopotential f.e.s considered

to best fit the differences between radiosonde derived

observations (RAOBs) and the forecasts made by these centers

are, respectively:

isotropic Fourier-Bessel series,

second-order autoregressive correlation function,

exponentially-damped cosine.

The ANMRC is introducing a new statistical objective

analysis scheme using a negative-squared-exponential

correlation model (Bourke, et al, 1989).

Candidate representations for geopotential f.e.

correlations, in our study, included the correlation

functions of low order autoregressive processes in addition

to the traditional negative-squared-exponential

representation and two, low order, inverse polynomials.

Auto- and cross-correlation function candidates for wind

f.e.s were all derived from the basis representation for

geopotential f.e. correlation, by assuming that the wind

component f.e.s are geostrophic. The criterion for

selection from the candidates, of a "best" representation
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for wind and geopotential f.e. correlations, is minimization

of the root-mean-square-differences (RMSDs) with

correlations of RAOB-minus-(6 hour) forecast differences

computed from the observations and forecasts of a full

season.

Section 2 presents candidate functions for geopotential

f.e. correlation and the basis functions for f.e. correla-

tions of the wind fields, with properties relevant to their

use in multivariate objective analysis. Section 3 describes

our reference data sets, with the criteria used their

construction, and our rationale for choice of regional

subdivisions for geographic comparisons; and it discusses

simultaneous fitting of the five, wind field, f.e.

correlation arrays, with our suite of candidate correlation

models. Section 4 establishes the optimal representation

for height/height correlations. (The outcome is surprising,

although fully consistent with NWP improvements in recent

years). Regional, and latitude and pressure level depend-

encies of correlation function parameters are described.

Section 4 also describes the results of fitting sets of

geostrophic wind correlation functions to observed

correlation arrays for the forecast errors of the wind

components. Section 5 concludes our report with an overview

of our study, and it s implications for present and future

analysis algorithm updating.

The present paper confines attention to representation

of correlation structures on constant pressure surfaces.
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Operational objective analysis requires specification of

three-dimensional correlations of the observation-minus-

forecast increments of wind components and geopotential.

Representation of the vertical factors which, in combination

with the isobaric correlation functions, describe the full

three-dimensional structure, will be addressed in Part 2.
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2. ,,Ca-n.didate representations for isobaric .correlation
.t..rt.rtc,,t,.u,.re

This section describes the set of correlation models

considered as candidates for geopotential, forecast-minus-

observation differences (f.e.s), with the rationale for our

choices. It then devotes primary attention to derivation of

auto- and cross-correlation models for the f.e.s of the wind

field, by imposing geostrophic constraints on U- and V-wind

f.e.s, and focusing on required properties of candidate

correlation basis functions. Here "candidate correlation

basis function" refers to a correlation model for isobaric

height f.e.s, from which auto- and cross-correlation models

for wind component f.e.s are derived by assuming the wind

f.e.s are geostrophically related to geopotential f.e.s.

The forms of the models of isobaric spatial correlation

structure, which are compared for their capacities to

represent observed f.e. correlations as functions of

location separation, fall into four categories -- on the

basis of rationale for inclusion:

Category I. is comprised of the classic

correlation model for forecast-minus-observation

differences of both geopotential and temperature

(Bergman, 1979; Burke, et al, 1989;

Rutherford, 1972; Schlatter, 1975):

which we refer to as the "negative squared

exponential" and abbreviate SQEX.



CAtggry.II. is comprised of a family of

functions, the members of which are derived from

stochastic autoregressive representations of

geopotential f.e.s, or "increments". That is, at

any given time, the increment field is regarded as

the state of a spatially coherent, time

evolutionary stochastic/dynamic process. The

theoretical assumptions made in these derivations

are that the discrepancies between (6-hour)

forecast and reported geopotential values, have

zero ensemble means and are regionally, second

order stationary. Mathematical details of the

derivations of these functions from

representations of the forecast error field as the

output of a linear filter driven by white noise,

are given in Thiebaux and Pedder (1987), with

references to experiments with these models which

have been reported in the meteorological

literature. The geopotential f.e. correlation

functions in this category are as follows:

i) The correlation function for an isotropic,

first-order autoregressive process

fR&6 = eye(-6b0), s > o
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which is the well-known negative exponential

function and will be abbreviated FOAR, for "first

order autoregressive"

ii) The correlation function for an isotopic

second-order autoregressive process

fr = Cic(w -w in (u e e sinan p(-C) , TO o
for which we will use the designation SOAR.

iii)The correlation function for an isotropic

third-order autoregressive process

ROO = E[d Cos(bn) 4- 3 YnebYV3 espcas) .- ce)

' >o a ," (O ynA = &(x,6, c
which will be designated TOAR.

iv) The correlation function for an .anisotropic

second-order autoregressive process
.1

a Co' si ex? (-c 
£ -= L ~ > o aod Xv _ A >0.

Category III. is a small family, of two functions

which are reciprocals of low-order polynomials:

and): (P I, ot- + bC 4 .+ v6)-[
and

R~r} -~0( 0 + lotbC4 + -6+ <tr3 _+,e ror~
This category was included with the expectation

that increasing the number of adjustable

parameters in the function used to represent the

location-separation dependence of f.e.

I

I
I.
I

I

I
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correlations would increase the goodness-of-fit of

the function to observed correlation structure.

Category IV. has one member, suggested by Gandin

(1988):

R(' X ( l + m + (a v.) p (_LT)

which we refer to as Kagan's function.

One of the functions identified above does not satisfy

requirements for candidate correlation basis functions, as

enumerated in Julian and Thiebaux (1975), for example.

This function is the FOAR. We include it among the

functions fit to arrays of auto-correlations of geopotential

f.e.s; although it is necessarily excluded from considera-

tion in relation to wind f.e.s.

In the derivation of correlation representations for

f.e.s of the wind components, namely for

UU V,V U,V U,Z and V,Z

we write the covariance for geopotential f.e.s as

where T. signifies variance and Rfr) the geopotential f.e.

correlation basis function. r denotes the separation

between locations of observed or analyzed geopotential

values, and is always taken to be positive. The assumed

geostrophic relations among forecast errors of wind and

geopotential, as.we use them, are

u = snsp O Cid _Ad Z_
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in terms of longitude, A. , and latitude, A

except for a common ~2 factor, the geostrophically implied

covariances and variances involving the wind f.e.s are

C =Q'~j -k~- ___ a0- S~ ~n4 d1i tTC~

e (kz'j-)=
L"n* ;in 4os4 xji 0kT it dV

82e a 01

_ _ _ _ _ _ _ ( !! iR .-e w e 1 - _ _

%sn4)6;<zt^ 6 dn T¢ ' Eli )4 k-

e (vivs)- ( dR12 ar br
b 1 0dl

-g o_- ~r 
43r a ,i pj~

0(6i) = I II
1I -4.a

IC (v\J ,).

Conditions required for uniqueness of the geostrophi-

cally implied, wind f.e. variances (See Thiebaux and Pedder,

1987, p.156.) are

-I, I-o

an Tc

d 2R '

dxl J

L ( t,;Se)

%- +h

Accordingly,

C ( Vi '-'7j) -- L-- a R we
--. 'nkC-Or'k T-O 6-11Z

2;'�T 6.)
C') 4; b .1

1�-- 14

SN-Iki coc�� '614;CK4�

( I dR- 

e (U! 3Uj) =

W)((A) ,,Gm C(Qj, jh



Since these are properties of all of our candidate

correlation basis functions, then, in deriving the variances

of the f.e.s of U and V, the separation-dependent factors

may be rewritten as

, anL _
and

for LI

for V
II V'n ( dIC)( 1, ae0 r1 r-C >> r I dr C .~ i.TA- , dA. a 1 ] 

Furthermore, all but one of our

isotropic; and we write them as

separation

= o-I n4, 4

For these cases,

o r t h al
sro t hat

=L

candidate basis functions is

functions of great-circle-

cot , co slO,-121) 

e or GF = A

t or O3 =- + ;

y(V ) .- k L .
77:2" -f>n- If

Hence, the geostrophically-derived lag-correlation functions

for wind-component forecast-errors, may be derived as

follows:

a('Vj'-Zj)= 4E -~-e fr _&V Dc;X;4~j

Q2(; ,/ ) = _ ( d _P+ dR &v c /

(iv) (d2~r at, ar .,. daT ia P.>; AC

*j 8'R 6-e 3-0 1 ; -d/ _~~~t L/

:--j)_ R IFdr /4 L

= - cos-4

-- I



and their values computed from the repetitive factors

A? A?__ ons L = 1,^ ( d1:Ž.)CLIR &R ~ ~ ~ ~~~~c t

and the derivatives off with respect to latitude and

longitude. The latter are given in Appendix I.

Table 1 presents the isotropic candidate correlation

basis functions and the factors required by the above

formulations of geostrophic wind correlation functions.

Appendix II gives the technical details of the derivations

for TOAR.

The reader may confirm that the isotropic, candidate

correlation basis functions satisfy the necessary and

sufficient conditions for derivation of geostrophic wind

correlation functions, by inspection of Table 1, since all

basis functions satisfy

k &~ -0 anI hm & is 'finite.

The former permits application of l'Hopital's rule to

evaluate ~o0 /,) which then establishes its

identity to lh' dtR
D -0 dtI

For the one anisotropic function considered here, with

location separation tensor -c( = a)& , derivation and

calculation of geostrophic wind correlation functions are

even more straight forward. In this case we assumed that
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the geopotential f.e. covariances may be written in terms of

the correlation basis function as

2ar, th w fiezl

Consequently, except for a common factor, the wind field

covariances aree (va, ( -, o A) R.
etc. ,<nT , t it R ,() )
et c.

In other words, we have only the signs of the longitude

and latitude differences to deal with, rather than the

partial derivatives of a scalar measure of location

separation. It follows that the lag-correlation

functions for the geostrophic wind components are simply

Q vij=a> R (6 4)/ Iusj -- d g 2 (Rdm)

'?(v; 'e O aRb;.i 5 a 14LVIu

C(v,,<= a O'>( R,(&)/L

¢, (UjSA U) = ') (')/Lu

Furthermore, following Thiebaux (1976, '77, '81.) and

Thiebaux, Mitchell and Shantz (1986), we assume the

geopotential f.e. correlation basis function has the form
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~~~~~~~~~~~~~~~~~~~~~~Q-d
{CCOS(Q,1 4) (Qtka)j exp(-c, )x{co (2 + i e p( a

with

~ I 4),- fa1 o.,d. ,li = I1x - 1.

Accordingly, the geostrophically implicit wind correlation

functions factor; and the factors:

C)~b¢) a^R,(St4) Lu and aq2(z>4 as (82) L'V
64i ¢ bapj Al Ls t 
may be obtained from Table 1, lines 2 (or 3), by

substituting = b&4 and & .

We note that for both isotropic and anisotropic basis

functions, all correlations derived for geostrophic wind

components, i.e. both auto- and cross-correlation functions

are a..nisotropic. This is illustrated in Figure 1, where the

contours of the SOAR basis function and of the geostrophicly

implicit wind f.e. correlation functions are drawn relative

to a single analysis point.
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3. Referenf ,e.. data sets and *fun..ciQn..t.titon ittig poQcedures

Observation-minus-forecast differences for radiosonde-

derived mandatory level winds and heights were obtained from

one year of operational runs of NMC's global spectral model.

In their construction, 6-hour forecast values on a 2.5 X 2.5

grid were interpolated bi-linearly to the locations of the

radiosonde stations and differenced with the RAOB reports at

00 and 12 GMT. These differences or "forecast errors"

(f.e.s) were stored separately for the two synoptic

observing times, in four three-month data sets for which we

have defined "Winter" as December 1 through February 28(29)

and "Summer" as June 1 through August 31.

Northern and Southern Hemisphere data were partitioned

by geographic region. In the Northern Hemisphere,

longitudinal divisions created four large regions labeled

"North America", "Eastern Asia", "Western Asia", and

"Europe", which were then partitioned into latitude bands:

0 to 30 N, 25 to 55 N, and 50 to 90 N. Southern Hemisphere

data were partitioned by latitude only. Radiosonde coverage

strongly influenced the choice of boundary designations

shown in Figure 2. Particularly in the Southern Hemisphere,

many stations report at only one observing time in each 24

hour period.

- /5'-



For the computation of a regional array of correlations

as functions of location separation, station pairs with

insufficient common report times were omitted. Of the

ninety possible common reports within any season, we

required a minimum of fifty in the Northern Hemisphere and

20 in the Southern Hemisphere. In the event that data for a

particular day was missing from the covariance summation of

the numerator because at least one of the stations of tho

pair did not have a report on the file, that day was omitted

from both variance summations of the denominator, for

comparability of variance and covariance statistics.

Our forecast error correlation arrays have had the

effects of both the forecast model bias (Thiebaux and

Morone, 1989) and the observational error variance (Verzal,

Thiebaux, and Morone, 1988) removed in their computation.

Removing the model bias allows the correlations to approach

zero at large separations. Removing the effect of

observational error allows the correlations to go to one at

zero separation.

b. fitting correlation function candidates to observed
f.e. correlation arrays

A principal issue in our investigation is whether

functions which are derived geostrophically from a

correlation function for isobaric heights provide optimal

representations for isobaric wind/height and wind/wind f.e.

correlation structure. Accordingly we developed two sets of

- /4 -



model parameterization algorithms: one to fit candidate

geopotential correlation functions (only) to observed

geopotential autocorrelation arrays and a second for

simultaneous fitting of implicit geostrophic derivatives of

suitable basis functions to observed wind/height and

wind/wind correlation arrays. Both algorithms compute

goodness-of-fit statistics for geopotential, alone, and for

wind/height and wind/wind correlations, collectively, on all

candidate representations except the FOAR. Thus, with the

one exception, our results provide comparable measures of

fit, to address the question of the appropriateness of

imposing geostrophy on the full, multivariate, correlation

matrix. The first-order autoregressive correlation function

is parameterized only by the first algorithm, since it does

not satisfy requirements for geostrophic correlation

derivations.

For the geopotential correlation array fits, the fitting

procedure uses the IMSL implementation of a modified

Levenberg-Marquardt algorithm for bounded least-squares

minimization of the error sum-of-squares. In general, in

fitting candidate representations for isobaric lag

correlation which are functions of (univariate) distance,

the values of the full height/height correlation array are

first averaged within adjacent distance intervals, each of

length .025 radians. This is a computational expedient; and

averaging the data over short intervals of scalar separation

is consistent with modeling objectives. Nonetheless, for
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comparability of measures of goodness-of-fit with the

outcome of simultaneous fittings, root-mean-square

differences for the resulting function parameterizations are

computed with the original, full correlation arrays.

In the work dealing with the five correlation functions

involving wind components:

P(U"U,). Sakv), Otv .(M 6?k?) and 6?(V,2)
candidate basis functions and their derivatives were fitted

simultaneously to wind/height and wind/wind f.e. correlation

data, using appropriate weights. With autocorrelations and

cross-correlations fit simultaneously, cross-correlations

are given twice the weight because they represent two terms

in the correlation matrix. Again, the fitting procedure

uses the IMSL implementation of the bounded least-squares

minimization of an error sum-of-squares.

Wind-wind and height-wind correlation function

candidates are obtained from candidate basis functions by

taking derivatives with respect to the horizontal coordinate

axes. Thus they are composed of derivatives of the basis

functions with respect to their scalar argument, namely

great circle distance (GCD), and partial derivatives of GCD

with respect to increments of latitude and longitude. (See

Appendix I.)

_ /g_



Wind forecast error correlations exhibit very little

structure at large separations. The scale of the patterns

evident in f.e. correlation data for the winds is much

smaller than that shown by the height data. As an example,

Figure 3 shows west-to-east cross-sections of the 500MB U/U

forecast error correlation data from Winter 1986-87, for

three different Northern Hemisphere regions, plotted as

functions of great-circle separation. At separations greater

than 0.2 radians, correlation values were small and the

arrays were "noisy". Based on this evidence the decision was

made to examine and attempt to fit the wind correlations

only out to a separation of 0.2 radians.

Although we might have fit the basis functions and

their derivatives to the full set of correlation values, our

choice was to bin the data to reduce sampling variations due

to station distribution and the required computer resources.

Since height/wind and wind/wind correlations and their

candidate representations are anisotropic, data binning of

correlations involving wind f.e.s is based on the vector

separation of locations. We averaged radially over

intervals of 0.025 radians and over angles in 45 degree

increments.

--/?-



4. Optimal representations of" the correlatei.s .. f w.n.
... ... ... d . ,sI..................... .........t, . a... l.... .................... .e,,,,,... ......................................... ............

With the expectation that selection of a representation

for geopotential f.e. autocorrelation would define the full

array of height/height, height/wind, and wind/wind correla-

tion functions, major attention was devoted to determina-

tion of parameter values which best fit the candidate basis

functions to observed forecast-error correlations of

geopotential. Initially we worked with data sets obtained

from a tape archive of forecast-minus-RAOB differences for

the winter of 1984-85. However, since the major model

change implemented in the spring of 1986 had a significant

impact of the spatial structure of geopotential f.e.

correlations, new data sets were created, starting with

December 1, 1986; and the fitting was repeated with this

data from the current form of the operational model.

Figure 4 contrasts three eras of correlation structures, as

,ell as a slight difference between the structures at 00 and

12 GMT. The two curves illustrate the difference between

the negative squared exponential correlation function which

has been in the operational suite since 1978, with the

parameter value assigned in 1982, and the function found to

best fit the 500 mb geopotential correlations computed from

the 1984-85 data set. This figure also compares these two

correlation model curves with observed correlation values

obtained with winter 1986-87 f.e.s. The correlation length

scales of the more recent data sets are clearly much greater



than that assumed by the operational analysis which, to the

time of this writing, still uses the SQEX function. The

contrast between the correlation structures at 00 and 12 GMT

is more subtle, although it is evident that the 12 GMT f.e.

correlation array drops faster to about 0.20 radians and

then flattens out, relative to the 12 GMT array. This

difference in correlation structures, between the two

principle observing times was apparent in other regions as

well, with the most marked contrast in the 0 to 30

latitude band. Figures 5.a and b illustrate regional

differences, with 5.a contrasting structures within latitude

bands of North America and 5.b illustrating change with

longitude for a single latitude band. On the above evidence

we maintained separate regional data sets, treated 00 and 12

GMT separately, and worked only with forecast errors from

the most recent version of the NMC global model. Finally,

Figure 6 demonstrates the dependence of f.e. correlation

length scale on isobaric level -- setting the stage for fine

tuning parameters of the function used in O.A., in this

dimension as well.

A discovery made early in the investigation which

ultimately had considerable impact on the modeling of

multivariate correlation structure, was that the impression

of a non-zero asymptote in geopotential f.e. correlation

arrays which had been ascribed to long wave bias

contamination, disappeared when the correlation functions

-2/ -



were plotted out to 0.7 radians. (Compare Figure 4 with

Figures 5.a.) Thus we omitted the use of a term to

represent a nonzero asymptote, in distinction to the work of

Thiebaux, Mitchell and Shantz (1986), and fit the candidates

for modeling geopotential correlation out to a great-circle

separation of 0.7 radians.

Category I - TII models of isobaric spatial correlation

structure, described in Section 2, were fit to the interval

averaged geopotential correlation values of five of the

mandatory pressure levels, for all of the regions designated

in the previous section. Root-mean-square differences

between each optimally parameterized model and the corres-

ponding observed autocorrelation array were computed as the

basis for ranking "model performance" within each region.

Figure 7 makes pressure-level/latitude comparisons of the

full set of candidate functions, for 850, 500, 250, 100 mb.,

for the three latitude bands of North America. For

geopotential f.e. correlation arrays considered in isolation

the function corresponding to a first-order auto-regressive

process ranks first among all candidates, in southern and

mid-latitudes at all four pressure levels. In the northern

latitude band, there is no one function which provides the

smallest RMSDs with the observed correlations at all levels.

We note that the fitting done with the autoregressive

correlation functions, reported by this figure, used

distinct algorithms for the FOAR, SOAR, and TOAR correlation

representations each with a single initial parameter array

_ no_~ 



specified as the starting point for the search in the

corresponding parameter space. As we will show, further

along in the paper, the three functions can be subsumed by a

generalized TOAR representation and the fitting done with a

single algorithm. Thus, in viewing Figure 7, FOAR, SOAR,

and TOAR results should be regarded together as representing

the correlation structure of low-order autoregressive pro-

cesses, where the TOAR is third-order in the strict sense.

Using the parameters obtained in fitting five of the

multivariate correlation basis functions to the 500 mb, mid-

latitude region of North America, the implicit height/wind

and wind/wind correlation function models were fitted to

their corresponding observed correlation arrays, for the

same region. The results are illustrated by Figure 8.a.

We note that, with the restriction on parameter values

imposed by matching wind to height correlations, the present

operational correlation function model is outstandingly

surpassed in performance by all four other possibilities.

With a slight exception, the top performance in this region

is scored by the SOAR. These comparisons were repeated with

function parameters obtained from simultaneous fitting of

derived correlation models to observed height/wind and

wind/wind correlation values (omitting the height/height

correlation array), with results shown in Figure 8.b. Here

the contrasts among basis functions are not as great,

indicating that significant improvements may be achieved

simply by letting the observed (wind) f.e. correlation



structures influence paramrneterizations. Nonetheless, the

SOAR tied with the TOAR in providing the RMSD best

representation for height/wind and wind/wind f.e.

correlation structure. Finally we note that a and b of

Figure 8 are not comparable with one another because the

parameter fits and the goodness-of-fit statistics have been

computed for different ranges of location separations.

The Z/Z fits that selected the parameters for 8.a used

correlations for observed f.e.s at separations as great as

.7 radians and computation of goodness-of-fit statistics for

the corresponding wind correlations took location

separations out to .4 radians. This is in distinction to the

simultaneous fits that selected the parameters of 8.b. The

latter involved correlation values and computed statistics

only for location separations to .2 radians.

As a consequence of the results just reported and a

study of the mathematical relationships between several of

the candidate functions (See Appendix III.), a major

revision of the fitting algorithm was made. The new

approach takes advantage of the ubiquitousness of the TOAR,

in the sense that the FOAR and SOAR are limiting cases of

it. Thus, by searching the parameter space in several

regions designated by the algorithm, virtually all options

are investigated in a single fitting maneuver; and the

unsuitability of the FOAR for geostrophic derivation of wind

f.e. correlation representations is no longer a concern,

because the parameters are bounded away from the limit at
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which the derivatives are not unique. Accordingly we have a

single functional form which incorporates the three auto-

regressive candidates, in addition to the Kagan function.

Comparison of the outcomes that result from fitting the

SQEX, FOAR, and the third order polynomial, in terms of

root-mean-square differences with interval(bin)-averaged

correlations, is provided by Tables 2 and 3. These show

RMSD values for five pressure levels, for North America and

the Southern Hemisphere, for Northern Hemisphere summer and

winter, respectively. At 1000 mb the third order polynomial

is slightly better for geopotential. At all levels above

1000 mb, the TOAR is optimal in the parameter region near

the FOAR limit, where it provides almost as good a fit as

the FOAR itself. The right-hand- sides of these tables give

corresponding results of simultaneous fits to height/wind

and wind/wind f.e. correlation arrays. Here, without

exception, the basis function whose derivative functions

provide the best fits to observed correlation arrays is the

TOAR with parameters in the "near FOAR" region, in both

hemispheres and at all five pressure levels. On the basis

of these results we limited ourselves, in subsequent work,

to correlation function fitting with the algorithm for the

general, third order autoregressive formulation, which

searches in Lhose regions of parameter space corresponding

to our prime candidate functions.

Tables 4 and 5 present comparative parameter values and

RMSDs for 500 mb at mid-latitudes, for North America,



Europe, West Asia, East Asia, and the Southern Hemisphere,

for summer and winter, respectively. The comparability

among parameter values for a particular function, across

regions, is within each row. The comparability of RMSDs,

among the candidate functions for a given region, is within

each column. Although the values of the constant

parameter(s) for each function clearly vary by region,

without exception the optimal form for the correlation

representation is a TOAR, again with its parameters chosen

from the region of the parameter space nearest the FOAR

limit. The regional influence on parameter values, evident

in these tables is attributed to a combination of factors,

one of which is the position of the sun relative to analysis

time -- a dependence that can be accounted for operationally

by writing parameter values as functions of longitude.

In both summer and winter the parameters selected by

the geopotential basis function fits, for North America and

the Southern Hemisphere, are remarkably similar. Further-

more, in both seasons, the values of the "c" parameter for

the best fitting TOAR suggest that its Northern Hemisphere

variation may be represented with a simple harmonic in

longitude. The picture presented by the parameter values of

the wind correlation function fits is more complicated. Both

the "a" and "c" parameter values vary significantly with

region; and here there is strong contrast between North

American and South Hemisphere values of the "c" parameter.
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Section 5. Overview and implications for analysis algorithmI.................................................

updating.

The work reported here has focused on the selection of

representations for isobaric correlation structures of

observation-minus-forecast differences (f.e.s) of wind and

geopotential fields. The principal objective was updating

the representations used in the NMC global data assimilation

system, for which the 6-hour forecast of the global spectral

model provides the "guess fields" for wind and geopotential

analyses. Geostrophic coupling of f.e.s is imposed in the

derivation of the wind-wind and wind-height correlation

functions, from a basic Z-Z forecast-error correlation

function. To date, the derived correlation representations

have been used operationally with a single set of parameter

values -- identical for height and wind f.e. correlations.

One of our purposes was to determine whether this is in

reasonable agreement with observed f.e. correlation

structure. In fact, the contrast in parameter values

selected as best-fitting the f.e. correlation arrays of

geopotential, on the one hand, and the winds, on the other,

points up the fact that the increments between observations

and forecast values are not fully geostrophic in their

ensemble properties. (Compare the a and b sections of

Tables 4 and 5.) In Figure 9 we demonstrate the contrast

between the U/U correlation length scale implicit in the

simultaneous wind parameterization of the best fitting TOAR

and that obtained by fitting the basis function to the

geopotential f.e. correlation array. It goes without saying
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that the scales are significantly different and that the use

of one parameter set in the role of the other would be

seriously misrepresenting the ensemble structure of the

observation-minus-forecast increment field.

The foregoing results clearly suggest the use of a

single functional form, with distinct parameter sets for

heights and winds. This recommendation of an algorithm for

multivariate optimum interpolation of wind and geopotential

f.e.s to the model grid, to produce analysed fields for

reinitialization will require testing, to assure its

compatability with other componcints of the data assimilation

system. For practical purposes, the performance of the

third-order autoregressive correlation function, with

parameters selected by fitting to geopotential f.e.

correlation arrays is indistinguishable from the fits of the

first-order function. And there is no doubt that the suite

of five wind/wind and wind/height correlation functions

derived from the TOAR, with parameters in the "near FOAR"

region, provides the best fits to corresponding arrays of

observed correlation values. Thus the TOAR is the function

of choice.

The most prominent feature of the functional form which

clearly provides the optimal basis for representations of

the correlation structures of these hichly complex forecast-

error fields, is its simplicity. Despite the anticipated

advantages of an anisotropic function for geopotential and
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of several adjustable parameters in closely related

correlation structure models, correlation arrays calculated

from the Center's operational forecast-minus-observation

differences have self-selected a relatively simple two

parameter model. This result, together with the evidence

that the most recent major change in NMC's global spectral

model led to a significant change in the ensemble spatial

structure of its forecast-errors, might have been

anticipated as a consequence of improvements in forecast

accuracy: The closer numerical weather prediction comes to

the true evolution of atmospheric states, the closer the

discrepancies of NWP forecasts and observations come to pure

(microscale + observation error) noise processes. The

higher order components of NWP models and of the most

dominant atmospheric scales are increasingly cleanly

differenced. Thus the spatial scales of the f.e. decrease

(toward zero) and smaller fractions of the analysis

increments are relevant to correcting forecast values at any

given distance from their observation. The simple negative

exponential, from a one parameter, first order process,

namely the FOAR, is characteristic of the improvement in

short range forecasting of geopotential fields. The use of

a function closely mimicing this behavior will constitute an

update of our data assimilation process compatable with

present forecast skill.

The fact that wind/height and wind/wind correlations are

not as well represented by functions that are direct
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geostrophic derivatives of the function which provides the

best representation for height/height correlations does not,

by itself, jeopardize the positive definiteness of the full

covariance matrix. What it says is that the ensemble

relationships between the forecast-minus-observation

increments for geopotential and the wind components is not

completely geostrophic; and thus it may not be appropriate

to impose full geostrophic balance on the functions selected

to represent those relationships. Consider that if it were

possible to use exal.y the covariance structure of the

discrepancy between six-hour forecast fields and reports

from the global observing system, that would be thJe optimal

choice for global objective analysis. Since that is not

possible, we model the covariance structure -- as closely as

possible to the way it shows up in observed f.e. covariance

arrays. With evidence that the height and wind f.e.s are

not in complete geostrophic balance, it is appropriate to

use covariance structure which does not impose full

geostrophy. In particular, we choose the functions which

provide the best fit to the data.

Our experience with change in forecast error correlation

structure, brought by change in the global forecast cycle

over a twelve month period, and the evidence for change in

correlation scales with time of year, confirm the

requirement for automation of correlation model updating.

We have identified a common framework for accessing the full

range of our candidate functions in a single fitting
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algorithm, making use of the fact that all (lower order)

autoregressive correlation functions are special cases of a

TOAR correlation function. Accordingly, reparameterizations

can be carried out in a highly efficient manner, with the

full generality of our suite of representations. Keeping

the analysis system in step with evolving characteristics of

NMC's global forecast system, can thus be made a relatively

straightforward housekeeping operation.
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Appendix III

This appendix shows how the TOAR function can be used to

represent the SOAR, FOAR, and Kagan functions and how, over a

restricted parameter range, a relatively exhaustive search may be

made for a "global" minimum fit. As a consequence it is possible

for a single function and fitting code to locate minima previous-

ly found by comparing fits of several functions.

The TOAR function for height-height correlations is

(AIII.1) {acos(bl)+flsin(br)}exp(-c) + yaxp(-cr)
R~~t)= ~+y

where

= bc(3ct2- b2 - c2)

jS = c(a2- 3b 2 - c2 )

y = -2ab(-2 + b2)

The SOAR function for height-height correlations is

(AIII.2) R(A) = {coG(-) + (e/d)i n Ca)} xP(-cC)
which may be obtained as the limit of TOAR as c approaches infin-

ity by applying L'HOpital's rule, dropping the second exponential

term which now has a zero coefficient, and relabeling the remain-

ing constants.

The FOAR function for height-height correlations is

(AIII.3) R(T) = exp(-acr)

which may be obtained as the limit of TOAR as a approaches infin-

ity by applying L'H6pital's rule, dropping the first exponential

term which is everywhere zero, and relabeling the remaining con-

stant.

Kagan's function, which was suggested for height-height cor-



relations by Gandin (1988), is

(AIII.4) 

which may be obtained as a special case of TOAR by setting b=o

and c-a and applying l'H~pital's rule three times.

The TOAR function (and the Kagan function as a special case

of TOAR) have the property that the third derivative of the

function with respect to the radius is continuous as one passes

through r=o. This implies that derivative properties of the wind

(divergence and vorticity) are modified smoothly by an analysis

based on these functions. The third derivative of SOAR is dis-

continuous, but the second derivative is continuous at r-o; the

second derivative of the FOAR is discontinuous. As a result of

these derivative properties one should remember that, although a

TOAR subprogram can be made to calculate the SOAR and FOAR func-

tions as special cases, the derivative properties of TOAR when

all parameters are finite do not hold in these limits.

Our experience indicates that in most cases the f. e. cor-

relation data are best fit by TOAR with b-u or SOAR with a=a, and

that, in cases with a reasonable amount of data, fits with these

restrictions are almost as good as the best unrestricted fits we

have obtained. We also find that the TOAR with b-0 frequently

has two local minima, and with b"O there is often at least one

more minimum, usually not as good as the others. While it is

difficult to prescribe a general search for a global minimum with

the unrestricted functions, under these restrictions the SOAR

search becomes one-dimensional and relatively straightforward and



the TOAR search becomes a relatively well-behaved two-dimensional

search. Thus we concentrate primarily on these restricted cases

of SOAR and TOAR. The TOAR function with b-o is, by application

of l'H8pital's rule to (AIII.1) above,

(AIII.5) Ta+Pt}eXP(-v)+yexp(-c')
R ( .0 co a~ + y

where

a =C(3a2-C2)

= ac(a 2 - C2)

y = -2a 3

The SOAR function with a=O is, by application of l'H8pital's rule

to (AIII.2) above,

(AIII.6) R(C)=(j+CT)eXp(-CT)

As above, the TOAR approaches the limiting cases of SOAR or FOAR

functions when one of the parameters approaches infinity. In

order to allow the SOAR limit to be reached and to cast the

search problem in a more tractable form, it is convenient to

express TOAR in terms of the ratio of a to c:

(AIII.7) {(3r2- 1 )+ (r2i 1)a'C)exp(-aV) -2r'exp(-av/r)
3r2 - 1 - 2r 3

where

a

C
p=--

c

We have chosen this form because in simultaneous wind-height

fitting we might want to include the SOAR limit r-O in the search

but we would not be interested in reaching the FOAR limit r*.

If the FOAR limit is to be included, an additional substitution



of variables would be necessary. Since the denominator of (AI-

II.7) becomes zero when r-1 (Kagan's function), we use the sim-

pler form (AIII.4) above. The TOAR with b-o is in a sense

smoothest near r-O when r-i and less smooth as we approach the

SOAR limit r-O or the FOAR limit r-o.

The search procedure for the restricted TOAR must allow us

to find all the local minima. For a given value of r we normally

find a single minimum as we vary a. Because the fitting process

is nonlinear, with unusual data distributions there could be any

number of minima, but for reasonable amounts of data there is

only one. Turning now to the search for minima in r of the

minimum with respect to a, we might expect two minima based on

the quadratic coefficients in the numerators of the coefficients,

less one because all the coefficients are monotonic in the range

of interest rLO, and we might expect that, because the denomina-

tor has its only two roots in this range at r=l, there might be

one or two additional numerator roots. By this argument we ex-

pect possibly three minima. This analysis is not rigorous be-

cause r also appears inside the exponential, and because the

fitting process is nonlinear, we must again assume a reasonable

distribution of data. To cover the realistic possibilities we

could search in 3 ranges on either side of the Kagan case; in

practise we have made the intervals near the Kagan case narrow

and combined them: since the variation of the function and the

fit through this range is slow, if there were 2 minima in this

range they couldn't differ significantly. Our intervals are

1. at or near the SOAR limit (0OrSO.i)



2. between SOAR and Kagan (o.1r I o r 0.62s)

3. near Kagan ( 0.62sr51.6 )

4. between Kagan and FOAR ( 1.6•rl1.0)

5. near the FOAR limit (lo.o0rIloo.o)

If we wish to avoid the discontinuous third derivative of SOAR at

r-o, we set the lower limit of interval 1 to a small positive

value such as 0.01. In fitting this function to data we find

that in most cases there are 2 local minima, one at or near the

SOAR limit (intervals 1 or 2) and one near the FOAR limit (inter-

vals 5 or 6). In a few cases there is one minimum fit at or near

Kagan's function (interval 3). Thus, to find the global minimum

we must search separately in at least two ranges of the parameter

ratio to compare the two local minima that normally exist. Our

choice of intervals is intended to having any one interval con-

tain both a relative minimum and a relative maximum which could

result in a false minimum from the fitting procedure.
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Table 1. Properties of isotropic candidate correlation basis functions, for positive location separation,- >o.

Basis function. R(t)

Squared exponential
(SQEX) ex (_b- 2)

Second order
autoregressive (SOAR)

C and f or a = 0:Sn( e(-c)
and for a = 0:

k} I+c -0) ep r-e )

Third order
autoregressive (TOAR)

Y exp(-c'e) + .[ccos(6r)
+i s I (bh)3 exp(-Ox)

where L # C.)

Inverse polynomial of
order 3 in -t , P3 :

[ 1++ 6 vI 4 ~ c 36-i

Inverse polynomial of
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Kagan's function:
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Table 2.. Root-mean-square differences between candidate functions and interval(bin)-averaged correlations

for mid-latitudes at 00GMT for No. Hemisphere summer.

Function/Level

Fits to Z/Z correlation val.ues only

North America So. Hemisphere

Simultaneous fits to Z/U, Z/V, U/u,
V/V, and U/V correlation values

North America So. Hemisphere

.0290 .06 55
SQEX/1000 .0134 .0344 .02 .05

850 .0135 .0199 .0215 .04245
50 .0088 .0242 .05 .0
250 .0061. .0224 .0465 .058

100 .0212 .0313494

FOAR/1000 .05.0353
850 .0024 .0117

500 .0012 .01
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100 .0060 .0185 _
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Table3. Root-mean-square differences between candidate functions and interval(bin)-averaged correlations

for mid-latitudes at OOGMT for No. Hemisphere winter.

Function/Level

Fits to Z/Z correlation values only

North America So. Hemisphere

Simultaneous fits to Z/U, Z/V, U/U,
V/V, and U/V correlation values

North America So. Hemisphere

SQEX/].000 .0045 .0146 .0411 .0307
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500 .0092 .0]1.55 .0137 .0389
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Table 4. Parameter values and root-mean-square differences with observed 
500 mb

correlation values in Northern Hemisphere summer

a. from geopotential basis function fits

REGION

Correlation
- ,4 - nmrAmtfpr ( S)

North
America Europe West Asia East Asia

P1VUq:. e-,l~~ ,VC:IL1 ../. K '7

t S~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
A A'IA 

TOAR (b=0)
near FOAR

a
c

TOAR (b=0) a
near SOAR c

TOAR (b=0)
near Kagan

a
c

757.
8.

RMSD

1000.
24.

.0012

16.

RMSD

20.
31.

nn q

.0042

.0048

55.

.0073

60.
109.

1000.
33.

73.
O.

89.
142.

1000 .
16,

.0031

35.
O.

.0046

43.
69.

.0050

Southern
Hemisphere

.1 .
9.

.0025 .0191

19.

.0060

.0072

.0208

23.
37.

.0217

kP1 cU -.- VV-JJ . _

_ I _A

Best TOAR
(b=0)

a
c

RMSD

757.
8.

.0012

1000.
24.

1000.
33.

.0048

1000.
16.

.0031 .0025

Y41 .
9.

.0191

b. from wind correlation function fits. _ _~~~~~~~~~~~~~~~~3
TOAR (b=0)
near FOAR

TOAR (b=0)
near SOAR

TOAR (b=0)
near Kagan

Best TOAR
(b=0)

a
c

a
c

a
c

a
c

RMSD

68.
5.

18.

.0068

81.
10.

25.
251.

101.
1.

25.
O.

.0080

.0096

81.
2.

20.
O.

.0083

233.

.0349

73.
1.

.0299.0065.0090

.0096.0070RMSD

39.
63.

.0376.0107

-0103 -0116

.0086RMSD

73.
1 .

28.
45.

68.
5.

37.
58.

81.
10.

38.
61.

101.
1.

32.
51.

81.
2.

.0065 .0299
RMSD .006 8 .0090 .0080

nrC]r .0081

I

r

.0103 .0116

.0090 .0080.0068RMSD



Table 5. Parameter values and root-mean-square differences with observed 500 mb

correlation values in Northern Hemisphere winter,

a. from geopotential basis function fits

REGION

Correlation
.. 1A-'

North
America Europe West Asia East Asia

Southern
Hemisphere

o ut :ltl~ _L % ~ .....v_

TOAR (b=0) a 854. 1000. 1000. 1000. 903.

near FOAR c 9. 22. 59. 12. 9.

RMSD .0010 .0022 .0090 .0025 .0081

TOAR (b=0) a 18. 49. 180. 28. 18.

near SOAR c
RMSD .0042 .0050 .0096 .0063 .0107

TOAR (b=0) a 22. 60. 214. 34. 22.

near Kagan c 36. 96. 343. 54 .0047 35 .0119
.0096 .0047 .0119

RMSD .0059 .0059

Best TOAR a 854. 1000. 1000. 1000. 903.

(b=0) c 9. ~~~~~~~22. 59. 12. 9

RMSD .0010 .0022 .0090 .0025 .0081

b. from wind correlation function fits

TOAR (b=0) a 105. 112. 110. ill. 82.

near FOAR c 4. 1 . 2. 1.

RMSD .0034 .0058 .0071 .0043 .0301

TOAR (b=0) a 24. 27. 25. 25. 29.

near SOAR c
RMSD .0040 .0056 .0090 .0051 .0348

TOAR (b=0) a 38. 42. 39. 40. 49.

near Kagan c 60. 67. 62 64 79.
RMSD .0067 .0080 .0114 .0078 .0368

Best TOAR a 105. 112. 110. 111. 82.

(b=0) c 4. 9. 1. 2. 1.

RMSD .0038 .0058 .0071 .0043 .0301
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Rankings of Candidates for Geopotential Correlations,
based on 1986-87 North American winter f.e.s
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modeled with parameters fit
using wind/wind & height/wind
observed correlations

* modeled with parameters fit
using height/height observed
correlations
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FIGURE CAPTIONS for "Global forecast error correlations"

Figure 1. Contour plots of height/height, height/wind, and
wind/wind correlation functions derived from the
SOAR basis function. Contours are drawn relative
to a single analysis point.

Figure 2.a. Radiosonde station locations for the Northern
Hemisphere, shown with regional divisions used
in our study. b. As a, for the Southern Hemi-
sphere.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

West-to-east cross sections of 500 mb U/U f.e.
correlation data for Winter 1986-87 plotted as
functions of great circle separation.

Interval averaged 500 mb, winter, geopotential
f.e. correlations versus great circle separation
in radians. O's denote values computed with 00GMT
forecast-minus-RAOB differences and X 's denote
values computed with 12GMT data, both for 1986-87.
The solid curve was obtained by fitting to 1984-85
f.e. data; and the -.-. curve represents the
function currently used by the GDAS.

Interval averaged 500 mb winter geopotential 6-hr
f.e. correlations (OOGMT) versus great circle
separation in radians.
a. compares latitude bands for North America.
b. compares regions defined by longitude between
25 and 550 N latitude.

Comparison of winter, mid-latitude North American
Z/Z correlation functions on four isobaric levels:
850, 500, 250, and 100 mb.

Rankings of candidates to represent geopotential
f.e. correlation, based on 1986-87 North American
winter data, for four pressure levels.

a. Normalized root-mean-square differences between
correlation representations derived from four
candidate basis functions and the observed auto-
and cross-correlation arrays for wind f.e.s, with
parameters obtained by fitting the basis function
to 500 mb winter geopotential f.e. correlations.
b. As a, but with parameters obtained by simultan-
eous fitting of the derived wind correlation
functions to observed wind correlation arrays.



Figure 9. Comparison of the North American 500mb U/U
correlation length scale obtained by fitting to
the auto- and cross- correlations of the wind
components (Z/U, U/U, U/V, V/V, Z/V)
simultaneously, shown as A A , and that
obtained by fitting the basis function to the Z/Z
correlation array, shown as o,* * .


