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Introduction:

There are many statistics which can serve as measures
of the skill of prediction. Among these are the correlation coef-
ficient, the mean square error and the mean error. In this note we
will address the characteristics of the correlation coefficient
when applied to regional or mesoscale model forecasts. It will be
observed that the correlation coefficient is sensitive to the spa-
tial scale and power spectrum of the fields being verified. Addi-
tional complications arise when the correlation is computed over
the small domains typical of regional or mesoscale models.

Using data sets provided by our recent work on region-
al data assimilation with the Nested Grid Model (NGM), some exam-
ples are given of the computation, over North America, of the
correlation coefficient for analyzed and forecast 500mb fields of
geopotential height, geostrophic relative vorticity and kinetic
energy, and the geostrophic advection of relative vorticity. These
computations show a decline in the correlation coefficient as
fields with greater high-wave number variability are verified. By
comparing the verification scores with those obtained for a persis-
tence forecast, we quantify the fact that dynamical model forecasts
of weather-related, differentials of the height field possess sig-
nificant skill

It is recommended that verification of differential
operators on the geopotential height be added to the statistics
used for evaluating regional forecast. Our computations show that
greater sensitivity can be achieved. Furthermore, the emphasis of
smaller scales of variation can be expected to reduce dependencies
of the statistics on the size of the verification domain.
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2. Regional model verification.

It is common practice to compute forecast verification
statistics for a regional model over specific sub-hemispheric geo-
graphic areas, e.g. eastern United States, Alaska, etc. Although
the domain of verification is limited, the fields being verified
may be considered to be comprised of waves of varying length, many
of which have scales exceeding the largest length scale of the
verification domain. On the other hand, there may be small scale
components present in the field which generally will not be integer
harmonics of the length of the domain. We consider below the ana-
lytic impact of these factors on certain statistics that enter into
the computation of the correlation.

For a one dimensional field, using trigonometric func-
tions to quantify the concept of spatial scale, we define an aver-
age operator,

fD
UF a=Do(F)dx

in terms of which the correlation p between two fields F and G may
be expressed as,

p= (- )uF)( UC
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The numerator of the correlation is the covariance
between F and G over the verification domain 0 < x < D. The
denominator, comprised of the product of the standard deviation of
F and G, serves to scale the result so that the correlation lies
between -1 and +1. The correlation is indeterminate if the vari-
ance of either F or G vanishes.



2a. The Mean:

Suppose that F is a forecast field that can be repre-
sented by a single waveform,

F- A~cOS( +X-2x))

One finds that the mean, ,- is given by,

(sinb (I-cosb)
F-A, - bcosa+ b sinab b Jb

with
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Thus, the computed mean value of F in the verification reqion (0,D)
will depend on the relative size of the domain and the scale, or
wavelength, of the field, as well as upon the phase of the waveform
with respect to the boundary of the domain. For small values of
D/L, the "mean value" of F may lie close to +/- A,. When D is
close (but not equal) to L, the mean value of F will be calculated
to be about +/- 0.1 A,. For D near 2 L, the computed value of the
mean will be less than +/- .05 A,.



2b The Variance:

The variance of the waveform F is given by,

Var(F)=F IL2

Computation yields,

A2 :
A= -{2b+cos2asin2b+sin2a(I -cos2b)}
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where again
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We note that, if D = n L with n an integer, then the mean
vanishes,and VariF)-A;,2; otherwise, the phase of the waveform with
respect to the verification domain influences the values computed
for both the mean and variance. 

2c The Covariance:

Consider two fields F and G defined by the waveforms,

F = A FCOS( T( (X - £F))~~~~F
G = Arcos( _(*j))

The covariance of F and G may calculated with the aid of,

(sin(bF-bc) sin(b2+bc)
TT-= AFA,{cosaFCOSaG 2(b,-bc) 2(bF+bc) }

ssin(bF-b,) sin(bF+be))
+sin aFs nac 2(bF-bc) 2(bF+bc) )

+cosasinCO ((1-cos(bF+bc)) (I -cos(b-bc)))

+sin acosac 2(bF-b) 2(bF+bj) }



in which,
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One may write the covariance as,

Cou(F,G)= l- C tFjC

If F and G have the same wavelength, i.e. b,-bo-b, then

FTU=AF4b (2bcos(aF- aj+cos(aF+ a.)sin 2b +sin(aF+ a)(1 -cos2b)}

If further D = n L, then b = 2gU and

AFAco a
2 coS(aF-ac)

which indicates a simple relationship between covariance (or corre-
lation) and the relative phase of the correlated fields. In the
more general case, no such simple relationship exists.

If F and G have different wavelengths, each of which is a
harmonic of the range D of integration, then Fa=o. Note however
that even if F and G are orthogonal functions over some fundamental
interval, they will generally have a non-vanishing covariance over
an arbitrary sub-domain D.
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3. Correlation of superimposed waveforms:

We have seen in section 2. that, when the computation is
done over an arbitrary domain, the correlation statistic is a com-
plex function of phase angle and of the scale of the field being
verified and the size of the verification domain. In this section,
we draw attention to the dependence of the correlation of complex
waveforms on the power spectrum of the spectral components compris-
ing the waveforms.

We restrict the argument to the case in which the computa-
tion is performed over a domain that is a "fundamental" for all the
elements in the waveform. Let F and G be the two fields to be
correlated, with

F = E ,F~cos(29n(x i-n)IL)

c = i 1 GCGcs(2itn(x - L)

and let the average operator be defined by,

F= - Fdx

For the fields F and G, one obtains:

F=0

a2F= var (F) ='-- I F 
F 2 A-1.~ 

rc = var(G) = = N G2

Cov(FC) = F ... F G¢ .cos 6,

Cor(FG)= Cov(FG)/lFac

= .l F nGcos6a/P
in which
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If we define

Pi= Cos 6t wi = FjCj/P

then

Cor (FG) - Zj.7wnpA

The factor w, is proportional to ratio of the power-spec-
tral density in specific wave numbers to the total power. We may
call it the correlation weight. For many meteorological fields the
bulk of the power is found in the planetary waves; the power spec-
trum falls off rapidly in the higher wavenumbers. The correlation
weights w. will reflect this property of the power spectrum, and
consequently the correlation coefficient will be dominated by the
characteristics of the planetary scale components of the field.

For global models this property of the correlation coef-
ficient may be accounted for by using spectral decomposition of the
fields and evaluating the correlation for specific portions of the
spectrum (Murphy and Epstein,1989.) For regional models verified
over sub-hemispheric domains approximate methods for achieving such
spectral decomposition have been suggested by Bettge and Baumhefner
(1980) and Errico (1985.)

Although basic meteorological fields are characterized by
the dominance of the planetary scale features of the circulation,
there are other fields (e.g. relative vorticity, static stability,
specific humidity and precipitation) that possess relatively
greater variability in smaller scales; indeed this is a significant
reason for our interest in the development of small-synoptic and
mesoscale prediction models. By focusing evaluation on these dif-
ferentiated fields a more meaningful verification of small synoptic
and mesoscale forecasts may be achieved. One must not ignore how-
ever the greater uncertainty associated with the analysis of these
quantities.



4. An Example:

Our recent experimental runs of the Regional Data Assimila-
tion System based on the revised Nested Grid forecast model have
provided a readily accessible data archive that we have used to
exhibit some properties of the correlation coefficient as a mea-
sure of forecast skill.

For the quoted statistics (a complete set is attached), we
used the 500 mb height field analyses and forecasts for the 48
hour period beginning 00Z 17 March 1990. In order to assess the
anticipated variation in forecast skill with spatial scale, we
have calculated finite difference approximations of the
geostrophic kinetic energy and relative vorticity, and of the
Jacobian operator giving the geostrophic advection of geostrophic
relative vorticity. (In computing these terms we neglected pre-
cise scaling by the coriolis and map-scale factors.) The statis-
tical evaluation was done over the North American region shown in
the subsequent maps.

Let's first examine the correlation coefficient between
forecasts and corresponding verifying analyses, computed at
12-hour intervals:

Height Kin En Vorticity Jacobian

12-hour .998 .974 .900 .796
24-hour .997 .931 .810 .677
36-hour .994 .887 .727 .538

48-hour .990 .871 .6714 .419

These correlation coefficients (see graph below) show a
decline of forecast skill that might have been anticipated. For
an April case, the power spectum of 500 mb geopotential height
was found (Gerrity and Parrish, 1982) to decline about two orders
of magnitude as the global wave number changed from 6 to 20 --
wavelength change from 6000 km to 2000 km. Thus, the skill of
the forecast in predicting waves with scale about 6000 km is
weighted about 100 times more heavily than waves with scale about
2000 km in evaluating the correlation coefficient for the height.
This weight differential shifts to more nearly one-to-one in the
vorticity, because of the wave-number squared multiplier in the
vorticity. For the Jacobian - i.e. advection of vorticity, the
weight assigned to the 2000 km wave most likely exceeds that
assigned to the 6000 km wave.
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So, although the forecast height is very highly correlated
to the analyzed height, this can be attributed to the dominance
of the energy content of the well-predicted, large scale compo-
nents of the field. For weather forecasting, it is important to

predict differential aspects of the height field. For these com-
ponents, we see that the forecast skill declines appreciably with
decreasing scale and with the length of the forecast. To account
for this, it seems important to eschew sole use of the height
correlation in forecast evaluation. Greater focus on the corre-
lation of differential forms may provide better measures of the
value of a forecast for weather prediction.
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In the figure below, we show the 500 mb height field ana-
lyzed over the North American verification domain for OOZ 17 Mar
90, the initial time for the forecasts verified. Note that the
synoptic state may be characterized as being a low-index flow
regime; one for which, persistence might be a good predictor.
The correlation coefficient for the persistence forecast of the
height was calculated with the results: .967, .907, .850 and .821
for 12, 24, 36 and 48 hour forecast lengths. At the other ex-
treme, the persistence forecast of the Jacobian was almost uncor-
related with the verifying analyses. We computed the correlation
coefficients: .059, .101, .018 and .078 for 12, 24, 36 and 48
hours. Thus, even though the correlation coefficients calculated
for the RAFX forecast of the jacobian (advection of relative
vorticity) were low, they provided a significant improvement over
a persistence forecast.

INITIRL 500 MB HEIGHT OOZ 17 MRRCH 1990



References:

Bettge, T.W. and D.P. Baumhefner, 1980: A Method to Decompose
the Spatial Characteristics of Meteorological Variables within a
Limited Domain. Monthly Weather Review 108; 843-54.

Errico, R.M., 1985: Spectra Computed from a Limited Area Grid.
Monthly Weather Review 113; 1554-62.

Gerrity, J.P. and D.F. Parrish, 1982: Practical Predictability.
NMC Office Note 255, Development Division, NMC, Washington, D.C.,
20233.

Murphy, A.H. and E.S. Epstein, 1989: Skill Scores and Correla-
tion Coefficients in Model Verification. Monthly Weather Review
117; 572-81.



Hei. ght
rfean s

fcst
5506.4
5494.8
5480.3
5474.3

standard
obs
235 .1

236.4
241.7
250.5

devi at ion
fcst
230.8
232. 4
238.7
24.8.4

Vorticity
mean standard deviation
fcst obs f st

-0.6 18.5 16.6
-0.5 17.4 15. 1

0 17.1 14.8 
1 17. 1 14.7

mean
fc.st

8.9
16.3
36. 1
40. 1

Jacobian
standard devi at i on

obs fcst
1673.9 1328
1450.4 1217.6
1517.1 1068.6
1543.6 1029

Height C:hange over 12 hours
rfmean standard deviation
fcst obs fcst
-..18.7 59.5 58.3
--11. 6 59.9 57.6
-14.5 60.7 56.2
--5.9 63.3 56.9

Ki net i c
rmean standard deviati on
f st

40.7
410. 1

40
41. 3

oabs

40. 9
39

41. " 1
46.6

fc st
38.53.S ' 5
36.4
37.4
42.4

std dev
cor error
0.998 13.6
0.997 18.8
0.994 27.1
0.99 34.8

cor
0.9

0. 81
0.727
0.674

c or
0. 796
)0. 677
0. 538
0.419

c or
0.973
0.957
0. 917
0. 904

c , r
0. 974
0. 931
0). 887
)0.871

stCd dev
err or

8. 1
10.21 (').a 2

12
13. 1

std dev
err or
1 0 12.7
1093.6

.1303. 5
14.52.2

std dev
err or

13.6
17.3
24.. 3
27. 1

-std dev
err or

9.4
14.. 2

1 9

-; J

HOUR
12
24
36
48.

HCOUR

12
24
36
48

HOUR
12
24
36
48

HOUR

24
36
48

HOUR
12
24
36
48

riean
obs

5498.3
5482.9
54782. 9
5478.9

mean
obs
-0.3
-0.3
0.2
0.8

me an
ob s
-0.3
18. 3
27.2
22

Mean
obls
-- :26, 7
.... 15.4

-10. 1
6

Ife an,
ob s

c-A-I6"

42
41.6
41.8
42. 4



Persistence forecast HeicIght
mean standard deviation
fcst obs fcst
5525. 1 235.1 227.7
5525.1 236.4 227.7
5525.1 241.7 227.7
5525.1 250.5 227.7

c or
C0. 967
0C. 907
0.85

C.. 821

Persistence forecast Vorticity
meanrl standard deviation
fcst

-1.. 1

--I.1 
-1.1
-- 1.1

.obs
18.5
17.4
17.1
17. 1

fcst
18.4
18.4
18.4
18.4

Persistence forecast Jacobian
mean standard deviation
fcst obs fcst

28.5 1673.9 1582.2
28.5 1450.4 1582.2
28.5 1517.1 1582..2
28.35 1543.6 1582.2

cor
0.385
0. 165

-0. 015
0.129

c c'rcor
0) . 059
0. 101
0.018
0. 078

std dev
error
59. 5

100.. 2
129. 3
144.7

std dev
err or
20.5
23. 1
25.3
23.5

std dev
er r cr
2234. 3

2035.. 1
2172. 1
2122. 3

HOUR
12
24
36
48

HOUR
12
24
36
48

HOUR
12
24
S36

148

mean
obs

5498.3
5482.9
5472.9
5478.9

rMean
obs

-0. 3
-0.3
0.2
0.8

rfmean
ob _s

-0. 3
18. 3
27.2

22


