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1. INTRODUCTION

Although every measurement, including meteorological ones, results in a value

averaged to some extent both in space and in time, a majority of measurements, or

observations, particularly traditional observations at meteorological stations, are usually

refered to, and considered as, giving instantaneous point values. At the same time, it is

practically always assumed, explicitly or implicitly, that every result of such measurement

is applicable, or representative, not only for the point and time of the measurement, but

also for some spatial, particularly horizontal, domain surrounding the observation point, as

well as for some interval of time.

The degree of this representativeness is, of course, different for different

parameters depending, first of all, on their spatial and temporal variability: the higher the

variability, the smaller is the representativeness domain, and the more often, in space and

time, should be therefore the observations performed in order to assure a given degree of

accuracy everywhere between the observations. Expressed quantitatively, in terms of the

root mean square (RMS) interpolation error, this requirement gives a rationale for the

planning of observation station networks knowing the statistical structure of the

meteorological parameter in question (e.g., Gandin, 1970).

There exist, however, meteorological parameters with such high variability that the

above requirement cannot be satisfied with any reasonable network density. The daily

precipitation amount is the most known among such parameters. There are many others,

like evaporation, snow cover, radiative heat fluxes, etc. For these parameters, the

requirement of sufficient accuracy at any point within an area should be, and usually is,

replaced by a weaker requirement that the values averaged over the area can be

determined with sufficient accuracy.

The area-averaged values of parameters with high spatial variability, like

precipitation and evaporation (and runoff) averaged over a river basin, are of primary

1.1



practical value. That is why several methods to estimate an area-mean value from several

point measurement data were developed in hydro-meteorology comparatively long ago. A

systematic review of these methods may be found in the monograph "Averaging of

meteorological fields" by R. Kagan (1979, hereafter refered to as K79).

Development of remote observations, particularly of those from meteorological

satellites, has resulted in increased importance of the spatial averaging problem. Although

the spatial resolution of modem remote sounding data is quite high, these data certainly

reflect values of meteorological parameters averaged over some domains. A kind of

averaging of point data is therefore needed if we wish to examine the agreement between

them and remote sounding information.

The main applications of temporally and spatially averaged data are, however,

caused by the increase in accuracy due to the averaging, which is particularly important for

long-range weather forecasts (often called climate forecasts) and even more for

investigations of the global climate change.

The problem of climate change, also known as that of global warming, attracts

very much attention nowadays. There are hundreds of publications devoted to this

problem. Still, many of these publications consider some specific, more or less localized,

phenomena presenting them as demonstrating already existing global warming (such

events are often refered to as "signatures" or even "fingerprints" of the global warming).

Needless to say, these "fingerprints", however interesting they may be by themselves,

cannot be considered as a proof of the presence (or absence) of the global warming. The

only way to empirically investigate the problem should be connected with attempts to

distinguish a small but persistent climate change on the background of much more

intensive everyday weather variability. In order to achieve this aim, it is necessary to apply

the averaging, both in time and in space, to a largest reasonable extent.

1.2



Some investigations of that kind have been performed with some surface

observation data, mainly with those on the surface air temperature. Several authors

computed and analysed time series of monthly mean temperature averaged over various

latitudinal belts, or even over the Northern hemisphere and found indications that a kind of

global warming is already taking place (e.g., Budyko, 1982). Many far-reaching

conclusions, predictions and proposals have been made on the basis of these findings.

The situation is, however, not so obvious as it might seem. Before making any

conclusion, it is necessary to evaluate not only the change itself, but also the root-mean-

square (RMS) error of this evaluation. This is not a simple task. Specifically, the well-

known "square root theorem" (stating that the RMS error in an average of n values is

inversly proportional to the square root of n) is not applicable here: it holds only for

averaging of independent data, while the values of a meteorological parameter like the

surface air temperature at various points or at various times may be strongly

interdependent. If, nevertheless, the theorem is applied to the problem under

consideration, it gives rather unrealistic, over-optimistic estimates of the averaging

accuracy.

A new approach to this problem has been developed by R. Kagan and his

colleagues about two decades ago. It is presented in a systematic way in K79. The

approach uses information on so-called statistical structure of the meteorological

parameter in question, that is, on its variance, correlation function and RMS observation

error. As long as the averaging over an area is linear with respect to the point values, as it

practically always is, Kagan's method allows us to estimate the RMS error of averaged

values as a function of the averaging method, of geometry (size and configuration of the

area, number and pattern of the points), and of the statistical structure.

Moreover, it is possible to find, for any given geometry and statistical structure,

such a linear combination of point values which approximate the area mean with the
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minimal RMS error. This procedure, called the optimal averaging, is in many respects

analogous to the so-called optimal (or optimum, or statistical) interpolation widely applied

in the objective analysis of meteorological fields. Due mainly to this application, the

optimal interpolation method is well known by the meteorological community, it is

described in recent monographs by J. Thiebaux and M. Pedder (1987) and by R. Daley

(1991). At the same time, the optimal averaging method remains almost uknown among

American specialists, as does the Kagan's approach in general. That is due to the fact that

almost all publications on the optimal averaging, including K79, are available only in

Russian.

New possibilities to perform the area averaging of various meteorological

parameters on a regular basis are emerging in connection with the Climate Data

Assimilation System (CDAS) designed now at NMC. Collecting most complete sets of

data and being not restricted in time by operational requirements, CDAS also makes it

possible to average deviations from the forecast first guess instead of those from

climatology, as it has been done before, and thus to achieve a higher accuracy. Even more

important from this point of view is the Reanalysis project developed in parallel with

CDAS (Kalnay and Jenne, 1991). Its aim is to perform anew objective analyses of past

data using modem methodology of the data assimilation like that of CDAS.

The design of optimal averaging is considered an integral part of CDAS and

Reanalysis projects, as is the work reported in this Office Note. Its purpose is mainly

methodological: to analyse main properties, first of all the accuracy, of the optimal

averaging (OAv) under various circumstances and to compare the OAv with other

procedures, like the optimal interpolation and the arithmetic averaging. In order to be able

to consider numerous effects in a most distinct way, a rather simplified OAv model - we

call it the "toy example" - is used throughout this investigation. It allows us to perform
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various integrations in analytical or, to be more exact, in a "quasi-analytical" form instead

of using numerical methods.

The text of this Office Note is organized as follows: General equations expressing

the RMS error of approximation of an area-mean value by any linear combination of point

values are presented in Section 2, and OAv is introduced as a special case. Section 3

describes the "toy example". Equations for the variance of the area-mean and for the

cross-correlation between it and a point value are derived and used in this section. These

equations are applied to the simplest case of using one point to characterize the area-

mean, i.e., to the problem of representativeness, in Section 4.

The most important, multi-point, situation is considered in some details in Section

5. Influence of various factors, like the area size, the number and disposition of points

etc., is analysed, and conclusions are drawn concerning rational ways of specifying these

factors. Section 6 is devoted to the influence of practically inevitable violations of

optimality - those caused by the incomplete knowledge or approximation of the underlying

statistics. The final Section 7 contains general conclusions as well as recomendations

concerning the practical application of OAv in CDAS and Reanalysis.
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2. AVERAGING ACCURACY AND STATISTICAL STRUCTURE.

As mentioned above, there exist many methods to estimate area mean values of

meteorological and hydrological parameters from observed point data on these

parameters. However different from each other these methods can be, each of them

finally results in presenting the area mean as a linear combination of observed values.

More exactly, this is true for deviations F of parameter in question from some background

field, usually for deviations from climatological norms (the so-called anomalies). Various

area averaging methods differ from each other only in how they specify the so-called

averaging weights, i.e., the coefficients of the linear combination. This means that the

value of F, averaged over some domain (S),

A = I JF(x,y)dxdy, (1)

(s)

where x and y are horizontal coordinates and S is the area of the domain (S), is

approximated by

n

A i= EWF(2)

i=1

where n is the number of points used in the approximation,

F = Fi + °(3)

is an observed value of Fi and 8i is a random observation error at point i. It will be

assumed throughout most of this paper that random errors are symmetrically distributed

i 0, (4)

where the overbar denotes statistical averaging, that they are non-correlated at different

points

8iaj = 0 (5)
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and that their root-mean-square value (the RMS observation error) A is constant within

the domain

8i 2 =A2 ( 2=1,2 ... ,n). (6)

As to the random function F itself, we assume that it is statistically homogeneous and

isotropic (with respect to second-order moments) within the domain, i. e, that its variance

D2 =F 2 is constant

F2 = D2 (7)

and that its autocorrelation function gt depends only on distance

FiFj
D ~~~~~~~~~~~~~~~~~(8)D2 = g(rij),

where ri = (x - xj) 2 + (Yi - yj )2 is the distance between points i and j.

The area-averaging accuracy, that is, the accuracy of approximating the area-mean value A

(1) by the linear combination A (2), may be characterized by the RMS averaging error E,

or by the averaging error variance

E2 =(A-A) 2 . (9)

Substituting expressions (1)-(3) into (9) and using assumptions (4)-(8), it is easy to obtain

the following equation

n n n sS 2
E2 = D2 UWiwkII(rik) + A2wi + JF(x, Y)dxdy

i=lk=l i=1 S (S)(10)

1 f
-a 2wi - JF(x,y)F(xi,yi)dxdy.
i=l (S)

The term
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2

{ F(x, y)dxdy f5 JJ F(x, y)F(x', y' )dxdydx' dy' (11)
S2 (s) (s)(s)

2 2in (10) represents the variance of the area-averaged value, B = A Using (8), one can

express (11) in the form

B2 =D2 1xdy" dy(12)s2 D 2 ff u( (x-x')2+(y-y')2 dydx dy .1 
(s)(s)

Analogously, the expression

1 J F(x,y)F(x i,yi)dxdy (13)
S

(S)

in the last term of (10) represents the covariance between the point value Fi and area-mean

value, C = AF/, and may be rewritten as

(S)C = D -2 jg(4(x - xi)2 +(y - yi)2)dxdy( 4

Using (12) and (14), one can rewrite equation (10), after dividing it byD 2 , in the form

n n n

82 = £ wwk(rik)+ n2Z w2
i=lk=l i=1

2n

- wi'J|(J(x-xi )2+(y-yi) )dxdy
i=1 (S)

+ 2 efJJ ( (x -x)2 + (y _ y )2 )dxdyd dy

(s)(s) (15)

or in a short form, using the notations above,

n n n n

82 = £ Wik(rik)+ W2i -21 Wi j i +p2
i=lk=1 i=1 i=l (16)

Here
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e2 =E2 ID2 , q2 =A 2/ID 2 , f2 =B2/D 2 and i =Ci /D 2 (17)

are, respectively, variances of averaging error, of random observation error and of area-

averaged value, and covariance between area-averaged and point values, normalized by

the variance of parameter F itself. Note that the cross-correlation function between the

area-averaged and point values

: y=C/(BD) = D / B (18)

differs from the normalized cross-covariance (.

Equation (16) (or (15)) allows us to evaluate the RMS error of approximation of the

area-averaged value by any linear combination of observed point values, i.e., by an

expression (2) with any given weights wi. One can instead determine the vector of

weights in such a way that e becomes a minimum as compared with its values with any

other choice of the weight vector. Necessary conditions of minimum

ae /I)wi = 0 (i = 1, 2,...,.n),

as applied to (16), result in a system of linear equations

n

It (rik)wk +r12wi = ~i (i = 1,2 .... n)
~~~~~~~~~~~~i=l ~~(19)

for weights wi. The averaging with weights found by solving the system (19) is called the

optimal averaging. Using (19), it is possible to obtain from (16) a simpler equation for the

(normalized) variance of the optimal averaging error:

n
2 = _2 iwi

i=1 (20)

It is worthwhile to mention that the quantity e defined in (17) expresses the ratio of the

RMS area-averaging error E to the standard deviation D of point values of parameter F.

Along with this quantity, or even instead of it, one may use the ratio of the averaging error

E to the standard deviation B of area-mean values

2.4



k= ~El J~B ~~= a e~/ .~(21)

We will call X the relative RMS averaging error, in contrast with the "absolute" RMS error

e. The variance B of area-averaged values is always less (or, to be more exact, never

larger) than the point variance D, and X is therefore always larger than e. Which of the

two averaging accuracy measures, e or X, should be of primary interest, depends on the

problem under consideration. The degree of our confidence in area-averaged values

themselves is better described by X, because it relates the averaging accuracy to the

variability of averaged values. If, however, we want to use the area averaging to obtain

results less influenced by a small-scale variability than the point values are, then e should

be prefered, because it relates the area averaging accuracy to the variability of point

values.

It may be also mentioned that equations (16),(19) and (20) are applicable to

approximation of any quantity depending on a meteorological parameter F, not necessarily

of its area-averaged value, by a linear combination of observed values of this parameter.

What is different for various problems of this kind are the equations expressing the

variance of the quantity in question and the covariance between it and F in terms of the

autocorrelation function of F. Particularly, equations (19) and (20) are valid for the

optimal interpolation of F into some point 0. In this case [ = 1 and ~i = It(rjo). The

optimal interpolation may be also considered as a limiting case of the optimal averaging

when the area size tends to zero.

Equations (19) and (20) are also applicable to a more general situation of averaging, when

we need to obtain an area-mean value not of parameter F itself but of some of its

differential characteristics, like vorticity or divergence. Possible applications of this

generalization of the optimal averaging will be discussed briefly in Section 7.
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3. SIMPLIFIED AREA-AVERAGING MODEL (THE "TOY EXAMPLE")

As was mentioned in the Introduction, the purpose of the investigation reported in this

Office Note was to provide illustration of main properties of the optimal averaging as

functions of its various parameters, as well as to compare the optimal averaging with some

other procedures, like the arithmetic averaging and the optimal interpolation. It is

convenient to do so using a rather simplified model so that various effects will appear in

their "pure" form, rather than complicated by the influence of other effects. It is also

important that computations with this "toy example" do not require numerical multi-

dimensional quadratures and may be therefore easily performed for large amounts of

cases.

There are two main assumptions resulting in our toy example: a) The autocorrelation

function g = j(rj 0 ) is the so-called "Gaussian" (or "negative square exponential") one:

2 2t(r) = exp(-r /r0
2). (22)

Here r is the distance between two points and r0 is the correlation radius understood as the

distance where the correlation is equal to l/e. Without loss in generality, one can put r0 =

1 which simply means that r0 is taken as the unit in measuring distances. We will call

distances measured this way relative distances. For them,

p(r) = exp(-r2). (23)

b) The averaging area (S) is a circle on the plane (which implies that distances under

consideration are small as compared with the Earth's radius). Its (relative) radius is

denoted Ro. Polar coordinates (r, p) with the origin in the area's center will be used, so

that the distance d12 between two points (rl,(pl) and (r2 , p2 ), is

2 2d12 = r + r2 - 2rlr2 cos(p 1 - (P2). (24)

It follows from the simplifying assumption b) that the (normalized) cross-covariance 

between the area mean value

(1/ tR6)o Jo ° F(r,(p)rdrd(p (25)
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and the value at a point is isotropic, depending only on the distance R between the area
center and the point in question or, in other words, on the radius-vector of the point.
Namely,

(RR0 ) = 12 2 lo F(R, 0) F(r, q)rdrdqp

~(R,~)- ~z2 o 2 2

_ -1 j [fro exp[-(R2 +r2 -2Rrcos9p)]rdrd9p
- RR J (26)

Using the integral presentation for the modified Bessel function of first kind and zero

order

Io(z) = f0 exp(-zcosp)d)p, (27)

one can transform (26) to

,(R, RO) = exp(-R2)fo ° exp(-r2 )10 (2Rr)rdr, (28)

or, by means of the series for Io

00 1 2k

I1 (2z) = E (-t2 z 2k, (29)
k=O(k!)

oo b k c
1 00 b

(R,)=-exp(-b) 20Jexp(-z)z dk, (30)
k=O(k!)

where

2 ~~2c=R0 ; b=R 2 (31)

A general expression for the integral in (30) may be written as

C k _~~~~~' ci

|oexp(-z)zkdk = k![1 - exp(-c) i (32)

and substitution of (32) into (30) gives, finally
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oo bk k c1
S(R, Ro) = 1-exp(-(c+ b)) .= (33)

0k=O J=

The series in (33) converges fast enough to allow very fast and efficient computations by a

simple computer code.

Analogous transformations may be applied to the expression for the (normalized) variance

of an area-averaged value

2(R)= Ro (r)rdrd]
(34)

1~~~( o 2o7r q 2p)
_ =2RD2 lo Jo 0 J0J (rlpl)F(r2p( 2 )rlr2drldr2dPld(pd2

Transformation of variables

(q)1 + T2) / 2 = ~ ; T01 -92 = (= (35)

(with Jacobian equal to 1) gives

p2(RO) =- ° fo ° o [r2 + r2-2 _2r1 r2 cospl}Ir2 drldr2 dtP212o (36)
=- f loo° °J exp[-(r2 + r22)]o exp[-(2rlr 2 cos(p)]d(pr1 r2 drldr2 .

Proceeding as above, we first apply (27):

}2(Ro) = 4 R° Ro °exp[-(r2 +r22)hO(2rlr2 )rlr2drldr2 (37)

and then (29), to obtain

p2(Ro) = Az4 o( o lRoR exp(-(rl2+r22))(rlr2 )2kdrdr2. (38)
R0k=(k!) 0
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The double integral in (38) is simply a product of two equal intergals or, in other words,

the square of an integral of type (32). We thus obtain, using the notation (31)

[2(R°)= I ,[1-exp(-c) -. (39)
C k=O i=O0_

Once again, it is very easy to perform computations with the equation (39), using a simple

code.

As shown in Section 2, it is not the cross-correlation function y between the area-averaged

and point values but the normalized cross-covariance function ~ that directly enters all

equations dealing with the averaging accuracy estimates and with the optimal averaging.

If, nevertheless, we are interested in the cross-correlation function as well, it may be easily

computed by equation (18), which in our case takes the form

=(R, RO)y(R, R0) - (, (40)
P(R0 )

As we use relative distances (those divided by the correlation radius) and normalized

variances and covariances, the variance of area-mean p2 is, in our toy-example, function of

only one variable, the (relative) radius of the area R0 (Fig. 1). It decreases, of course,

with increasing R0, but rather slowly, much slower than the point correlation g does with

increasing distance r. As to the cross-correlation y (40), it is a function of two variables,

R and R0 (Fig. 2). For a very small area, it is close to g(R). Two effects take place as Ro

increases: the "zero intercept" y(0, R0 ), that is, the correlation between circle-averaged

and central values, decreases, and the cross-correlation radius increases, so that the larger

R0 the flatter is the curve (R).
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Fig. 1. Relative standard deviation
(STD) of area-averaged values
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Fig. 2. Cross-correlation (CRS)
between point and area-averaged values
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4. REPRESENTATIVENESS OF A POINT OBSERVATION FOR AN
AREA-MEAN VALUE.

This section deals with the simplest situation, when only one point observation is

used to represent an area-averaged value. The usual means of doing so is just to assume

that the area-mean value is equal to observed point value. In order to estimate the RMS

error e of this assumption, one has to put n=l and w=l in expression (16):

e2 = l+ 1
2 _-2+g 2 (41)

One may instead apply the optimal averaging, using correspondingly simplified

equations (19)

~~(l~~+T~2 )W ~=~~ ; (42)

and (20)

e2 = p2 - w '

which gives

e2 = 2 2 2 / (1+ 12) (43)

The accuracy of the area-mean representation by a point value depends on the area

size, on position of the observation point inside (or outside) the area and on the accuracy

of the observation.

Two values of the relative observation error variance, 12 (denoted ETA2 in all

figures), T12 = .05 and 112 = .5, will be mostly used throughout this paper. The first value
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is often used for deviations of a "good" meteorological parameter, like temperature or

isobaric height, from climatological norm. According to it, the RMS observation error is

about 22% of the RMS anomaly. If the forecast first guess is used, instead of climatology,

as the background field, then a substantially larger relative observation error variance

should be used, because the variance D2 of deviations from the forecast first guess is

about ten times smaller than that of anomalies. The value rl2 = .5 used to represent this

case corresponds to the RMS observation error of about 70% of the RMS deviation from

the forecast first guess.

As to the two other influencing parameters, the radius Ro of the averaging area

and the distance d of the observation point from its center, two kinds of computations

using Eqs (41)-(43) were performed, one with d = 0 (representation from the center) and

varying Ro0 , another with some fixed Ro values and varying d. Two simple codes merged

with those for C and J computation were used in the course of these computations. Figs 3

- 6 present some results of these computations. "Opt" in these figures refers to the

optimal averaging, "Arith" to assuming the averaged value to coincide with the observed

one, "Abs" to normalized RMS averaging errors and "Rel" to relative RMS averaging

errors as they were defined in Section 2.

As may be seen from Fig. 3, presenting the case 12 = .05 (climatology as the

background field), an observed anomaly at the area center represents the area-averaged

value fairly well as long as the area radius remains small, not exceeding, say, 30% of the

correlation radius. For such areas, it does not make much difference which method of

averaging to apply and whether to consider absolute or relative RMS averaging error,

because this error is almost entirely determined by the RMS random error of the point

observation and because the optimal averaging weight is close to 1. The latter also means
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that the result of the optimal averaging depends almost entirely on the observed point

value; the climatological field makes very little influence on it.

The situation becomes quite different when the area radius is close to, or even

exceeds, the correlation radius. The optimal averaging weight decreases with increasing

area size, so that the area mean value of the parameter itself becomes less influenced by

observed point value and more by the climatological field. Correspondingly, the

advantage of the optimal averaging over "arithmetic" one becomes more and more

pronounced as the area size increases.

Along with this regularity, the differences between absolute and relative RMS

averaging errors also increase with increasing area size. If, for example, the area radius is

equal to the correlation radius (i.e., if Ro =1), then the relative averaging error is about

75% while the "absolute" error is about 50%.

Fig. 4 presents results of similar computations with T12 = .5 modeling the situation

when the forecast first guess is used, instead of climatology, as a background field.

Although looking quite analogous to those on Fig. 3, the curves on Fig. 4 demonstrate

essential difference between the application of forecast background and of climatological

one. The optimal averaging weight is substantially less than 1 even for very small areas,

indicating that the full area-mean value is strongly influenced by the first-guess field.

Consequently, the accuracy of optimal averaging, or optimal representation, is in this case

substantially higher, even for small areas, than that of assuming the area-mean value to be

equal to observed point value. This means that, while an "automatic" representation of

area-mean value of an anomaly by observed one is acceptable for small areas, it is highly

desirable to use, instead, the optimal representation when dealing with deviations from the

forecast first guess.
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Strictly speaking, this conclusion, as well as many others, is valid only if the

underlying statistics exactly reflect the reality, which certainly is never the case. It may be

shown, however, that the differences between assumed and real statistical structure have

comparatively small influence on the results and accuracy estimates of the optimal

averaging. This topic is considered in some detail in Section 6 of this Office Note.

Comparing Figs 3 and 4, one can see that differences between corresponding

curves on them are larger for smaller area sizes and smaller for larger areas. This reflects

the fact that the relative RMS observation error plays major role for averaging over small

areas, while for large areas it is the statistical structure of the parameter in question.

It is necessary to take into account, however, that RMS "absolute" errors on Figs

3 and 4 are those normalized on the RMS deviations from the background fields. If we

interpret the case with rT2 = .05 as typical for deviations from climate (anomalies) and that

with T12 = .5 as typical for deviations of the same parameter from the forecast first guess

(increments), then we actually assume that the variance of anomalies is ten times higher

than that of increments, which is a good estimate for such parameters as height,

temperature and wind. This means that in order to be able to compare the absolute values

of RMS averaging errors for anomalies and for increments, one needs first to perform a

kind of "renormalization", e.g., to divide the normalized absolute errors for increments by

/0 = 3.16, retaining those for anomalies as they are. It is easy to see then from Figs. 3

and 4 that averaging of increments promises substantially smaller RMS errors even for

small areas, than those achievable when averaging anomalies, and this difference increases

for larger areas. As may be seen from results presented in the next section, the same is

true when data not at one but at several points are used for the area-averaging.
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One may also mention on both Figs 3 and 4 that the relative RMS error of the

"automatic" representation of the area-mean value by observed one grows very fast with

increasing area size. When Ro exceeds 1, i.e., when the radius of the area is larger than

the correlation radius, then this relative error also exceeds about 1, and it becomes much

larger for larger areas. This shows that the simple replacement of the area-mean value by

the point value makes no sense for such areas, while the optimal representation may still

provide some information about the area-averaged value.

All the estimates above are for the most favorable position of the observation

point, i.e., in the center of the area. As may be seen from Figs 5 and 6, the averaging

accuracy decreases rather fast with increasing distance d of the observation from the area

center. When dealing with the representativeness of a single-point observation, one may

just assume that such observation should represent the value averaged over some small

area around the observation point. If, however, we are interested in recognizing a small

signal in the presence of strong noise, as is the case in the problem of climate change

detection on the background of natural weather variability, then it is desirable to average

over large areas, because, as illustrated by Fig. 1, the larger the area, the smaller is the

natural variability of the area-mean value. It is clear from the estimates presented in this

section that observation data not at one but at many points should be used in attempts to

achieve this aim. This general case of area averaging will be considered in some detail in

the next section of this Office Note.
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Fig. 3. Representation by central
point; ETA2=.05
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Fig. 4. Representation by central
point; ETA2-.5
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Fig. 5. Representation by various
points; R0= 1; ETA2=.05
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Fig. 6. Representation by various
points; RO= 1; ETA2=.5
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S. ESTIMATION OF AREA-AVERAGED VALUES FROM DATA AT

SEVERAL POINTS.

When observed data at several points are used to estimate an area-averaged value,

then a variety of factors influence the result of such averaging and its accuracy, and it is

practically impossible - and not desirable - to analyse this multi-factor influence in all its

complexity. One should try instead to diminish the scope of consideration by using some

simplifying assumptions, as well as by analysing the influence of each factor more or less

independently of that of other factors.

Applying this approach, we assume, first of all, a rather idealized distribution of

observation points: they are supposed to form a rectangular grid (see Fig. 7). This

assumption is actually the third simplification leading to our "toy example" (in addition to

assumptions that the averaging area is a circle and that the auto-correlation function of

point values is Gaussian). This assumption enables us to analyse the influence of various

factors in a much simpler way.

To further facilitate this analysis, it is desirable to specify some, so to say, "basic

state", i.e., to choose some configuration as a basis for comparisons. Based on some

preliminary computations, we have selected, for such basic state, Ro = 2 (i.e., the radius of

the averaging area equal to twice the correlation radius), 25 observations covering the 2x2

square centered in the averaging circle, and absence of correlation between the random

observation errors. As to the relative variance of the observation errors, two above-

mentioned values, rT2 = .05 (for anomalies) and q2 = .5 (for deviations from forecast) will

be considered.

The influence of the number of "stations" NP on the relative RMS error of optimal

and arithmetic averaging, as well as on the sum of optimal averaging weights, is shown on

Figs 8 and 9. One can see on these graphs that the weight sum quickly increases and the

optimal averaging error quickly decreases with increasing NP for small NPs, remaining
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almost constant for larger NP values (a minor "irregularity" between NP = 9 and 16 on

Fig. 8 is caused by the fact that 9 points include that in the center of the area, while 16 do

not). As to the arithmetic averaging, its RMS error also decreases for small NPs, but then

it begins to increase. This effect is particularly pronounced in Fig. 8, indicating that using

larger number of points in the course of arithmetically averaging anomalies over an area

may be even harmful.

In this respect, it is important to stress the following point. The so-called "square

root law", stating that the RMS error in an average of N data is proportional to N- 5 , is

often used to estimate the gain in accuracy caused by the averaging. This law is, however,

applicable only to the averaging of independent data. As to the values of a meteorological

parameter at different points, these values are interdependent, the more so the closer are

the points to each other. The influence of this may be seen from the curves "indep" on

Figs 8 and 9, reflecting the RMS error behaviour (with respect to its value for NP = 4)

according to the square root law. It may be even better demonstrated by Figs 10 and 11,

showing the same curves as Figs 8 and 9 (with added points for NP = 1) in a logarithmic

scale, so that the square root law is described by a straight line. (There are two such lines

of each of Figs. 10 and 11: on, denoted "SQR eta", crosses the NP=1 line at e = Tl,

another, SQR optl, crosses this line at e(l)).

The general conclusion from these examples is rather optimistic: they show that a

gain in accuracy achievable by using data at more than one observation point to estimate

area-mean value over a comparatively large area is quite high, particularly if the optimal

averaging is applied. At the same time, a naive assumption, that this gain may continue

infinitely when the observation density increases, would be, of course, wrong.

In fact, results like those may be used in order to design a rational station network

density for presentation of area-mean values, just like the results of analogous
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computations with the optimal interpolation instead of averaging are used to evaluate the

rational network density for representation of point values between the observation points.

One can mention in this respect that, from a qualitative point of view, the

described regularities with averaging do not differ from those valid for interpolation.

Quantitatively, however, they differ very much. The main fact is that the RMS absolute

(normalized) optimal averaging error is much less, under other equal conditions, than the

RMS optimal interpolation error. One can also see that the pattern of optimal averaging

weights is quite different from that of optimal interpolation weights. This difference may

be illustrated by weight patterns on Figs 12 and 13. While the interpolation weight is

maximal for the central point and decreases fast towards the area boundary, the pattern of

averaging weights is much more homogeneous.

A different kind of functional dependence is presented in Fig. 14. The number of

observation points was held constant (NP = 25) for this series of computations, but the

distance between neighboring points and, consequently, the size of area covered by these

points varied. As may be seen from Fig. 14, there exists (for a fixed NP) an optimal

density of such idealized network, such that the RMS averaging errors increase when the

density becomes higher or lower than the optimal one. This effect, typical for any

averaging, is a consequence of the fact that both limiting cases, XN = 0 and XN = oo, are

equivalent to the use of only one observation point. It is important to mention, however,

that this effect is quite strong for the arithmetic averaging, while, for the optimal

averaging, it is almost negligible. This example demonstrates another advantage of the

optimal averaging over the arithmetic one, its lower sensitivity to, so to say, external

conditions of the averaging.

The same conclusion may be drawn from curves on Figs 15 and 16 reflecting series

of computations with a fixed number (25) and disposition (in the 2x2 domain) of the

observation points but with varying radius Ro of the averaging area. Just like in the
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previous series (Fig. 14), there exists an optimal Ro value, and just like in that series, the

accuracy of arithmetic averaging markedly decreases when Ro differs from this optimal

value (particularly, when it becomes larger), while the optimal averaging accuracy is much

less sensitive to this factor.

The dependence of the area averaging accuracy on the remaining parameter, the

(normalized) RMS random observation error rl, is, unlike those shown on Figs 14-16,

monotonous. As illustrated by Fig. 17, RMS errors of both optimal and linear averaging

increase with growing rT, while the sum of optimal averaging weights, as well as their

variance, decreases.

All estimates above reflect the most favorable position of the observation network,

that centered with respect to the averaging area. In other words, it was assumed up to

now that the center of the "station" grid coincides with the averaging area center. As may

be seen from Figs 18 and 19, the situation becomes much worse when this symmetry is

violated. Certainly, these graphs reflect extreme cases when the observation grid covers

only one half of the averaging area, but they demonstrate quite convincingly that it is very

important to have the set of observation points as much centered with respect to the

averaging domain as possible. This means, from a practical point of view, that with a

given network of stations, one should select every averaging area in such a way that the

corresponding stations cover the area most homogeneously and symmetrically.

The curves on Figs 20 and 21 are based on results of computations already

reflected by Figs 15, 16, 18 and 19, but "absolute" RMS averaging errors are presented,

instead of relative ones, on Figs 20 and 21, and they have been "renormalized" in order to

compare the accuracy of averaging (both arithmetic and optimal), achievable for

deviations from climatological first guess (anomalies) and for deviations from forecast first

guess (increments). As mentioned in Section 4, the variance of increments is about 10

times smaller than that of anomalies, and this fact is reflected in our computations by
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assuming the normalized observational error variance rl2 for increments 10 times larger

than that for anomalies. To make the absolute RMS errors for anomalies and increments

normalized by the same value (the standard deviation of anomalies) and thus comparable

with each other, one has to divide all normalized absolute errors of area averaging for

increments (i.e., with r12 =. 5) by v4-6 =3.16, and this has been done when obtaining

results illustrated by Figs 20 and 21. Fig. 20 is, like Figs 15 and 16, for the case of

centered network of 25 "stations", while Fig. 21, like Figs 18 and 19, illustrate the case of

a network over a half of the domain.

As may be seen from Fig. 20, it makes a large difference which averaging method

to apply or whether to average anomalies or increments, except when the disposition of

observation points is close to most favorable one (which is practically almost never the

case). The less favorable is the averaging situation, the higher is the gain in accuracy due

to using optimal averaging instead of arithmetic one and to averaging increments instead

of anomalies. These differences are particularly pronounced in the case of the network

covering only a half of the domain (Fig. 21). The optimal averaging accuracy for

increments may be still acceptable in cases like this, while the use of anomalies instead of

increments and the application of arithmetic averaging instead of optimal one both result in

substantial decreases of the accuracy.

The last question to be considered in this section is the influence of a spatial

correlation between the observation errors on the optimal averaging procedure and on the

averaging accuracy. This problem arises, first of all, in connection with the possible

application of satellite indirect sounding data in addition to, or even instead of data from

stationary observation points, in the computation of area-mean values, as is done routinely

in the course of interpolation for objective analysis of meteorological fields. It is well

known that the random errors in satellite retrieved data are, unlike those in rawinsonde

5.5



information, horizontally correlated, and this correlation of observation errors substantially

influences the interpolation procedure, as well as its accuracy.

In order to investigate the influence of random observational error correlation on

the area-averaging, it is necessary, first of all, to replace the equation (5), which postulates

the absence of error correlation (see Section 2), by a more general equation

i-8-j = ,2 iij, (44)

where vj is the coefficient of correlation between the observation errors at points i

and j. We will assume for the observation errors, as for parameter itself, that their

correlation is homogeneous and isotropic, i.e., that the coefficient vj depends only on the

distance ri between the points.

Under such assumptions, the equation (16) should be replaced by

n n n
£2 = wiwk(~l(rik)+ T 2V(rik))-2Ewii+ *2. (45)

i=lk=l i=1

Correspondingly, the system (19) should be replaced by

n
= i (i = 12...)I (9(rik) + I 2V(rik))wk = i (in),

k=l (46)

while the equation (20) remains, formally, unchanged.

Results presented in Figs 22 and 23 were obtained under an additional assumption

that the error correlation function may be described by the same Gaussian function as the

correlation of parameter itself, but with a different correlation radius, namely

v(r) = sr) (47)

where s, the error correlation scale, is the ratio of the error correlation radius to the

parameter correlation radius (recall that the latter has been taken as the unit for measuring
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distances). s=0 on Figs 22 and 23 corresponds to non-correlated observational errors,

while s= 1 relates to the case when the radius of error correlation is as large as that for

parameter itself.

Fig. 22 demonstrates that the correlation of observational errors leads to a

substantial decrease in the averaging accuracy, when the relative variance of the

observation errors is large, and it has practically no impact when the relative variance is as

small as .05. This does not mean, however, that the optimal averaging procedure is not

influenced by the error correlation. Just like in the case of optimal interpolation, the

(positive) correlation of observation errors leads to more uneven, "capricious" pattern of

optimal averaging weights, as may be seen from Fig. 23 showing the dependence of

minimal and maximal optimal averaging weights from the error correlation scale. This

effect is a result of diminished diagonal predominance in the matrix of the system (46) due

to increase of non-diagonal elements of this matrix as compared with that for non-

correlated errors. Particularly, one can see from (46) and (47), that for s=l (so that v(r)=

k(r)) the matrix is basically the same as in the case of complete absence of random

observational errors. This indicates that smoothing of the weight pattern, caused by the

presence of non-correlated, or slightly correlated, observational errors, just vanishes if s is

equal to 1.

The decrease of diagonal predominance in a matrix inevitably leads to a decrease in

the computational stability of the solution of corresponding system of equations. It may

even result in violation of the positive definiteness. In order to avoid this danger, it is

desirable to use a small number of points with satellite data when performing the optimal

averaging over an area, or to use already averaged satellite retrieval data, the so-called

superobs.

5.7



3

2

1

1 

-2

-3
-3 -2 -1 0 1 2 3

Fig. 7. Averaging area and "observation" points: an example.
R0=2; XI=-I; XN=1.5; Yl=-I; NX=6; NY=5; NP=30



Fig. 8. Weight sum and RMS errors
R=2; [-1,1],[- 1,11; ETA2=0.05
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Fig. 9. Weight sum and RMS errors
R=2; [-1,1],-1,1]; ETA2=0.5
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Fig. 10. RMS errors and the "SQR law"
R=2; [-1,1],[- 1,1 ]; ETA2=0.05
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Fig. 11. RMS errors and the "SQR law"
R=2; [-1,1'],[-1,1]; ETA2=0.5
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Fig. 12. OPTIMAL AVERAGING versus OPTIMAL INTERPOLATION

(11,[-1,1], [-1,1]. Ro=2. NX=NY=5. ETA2=0.05.

Weight sum and RMS errors

______________________________________________________

WSUM Optimal Arithmetic
abs. rel. abs. rel.

Averaging 0.8231 0.1139 0.2681 0.2383 0.5607
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Fig. 13. OPTIMAL AVERAGING versus OPTIMAL INTERPOLATION

[11,[-1,1], [-1,1]. Ro=2. NX=NY=5. ETA2=0.5.

Weight sum and RMS errors

____-_______-_________________________________________

WSUM Optimal Arithmetic
abs. rel. abs. rel.

Averaging 0.7272 0.1806 0.3974 0.2735 0.6435
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Fig. 14. Weight sum and RMS errors
R=2; XN=YN=-X1=-Y1; NP=25
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Fig. 15.

Weight

Averaging over various areas
ETA2=.05; NP=25
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Fig. 16. Averaging over various areas
ETA2=.5; NP=25
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Fig. 17. Area-averaging
Dependence on eta
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Fig. 18. Averaging with data
over a half; ETA2=.05; NP=25
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Fig. 19. Averaging with data over
a half; ETA2=.5; NP=25
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Fig. 20. Renormalized ave
errors;

~raging
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Fig. 21. Renormalized averaging
errors; NP=25; [0,1],[-1, 1]
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Fig. 22. Averaging of observations
with correlated errors
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Fig. 23. Averaging of observations
with correlated errors
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6. NON-OPTIMALITY OF AREA AVERAGING CAUSED BY

APPROXIMATE KNOWLEDGE OF THE UNDERLYING STATISTICS.

Like any other statistically optimal procedure, the optimal averaging assures the

smallest RMS error of the averaging if the underlying statistics exactly reflect the reality.

The latter is never the case. Hypotheses of homogeneity and isotropy of correlation

functions are approximate by their very nature, as is the hypothesis of stationarity of these

functions in time. Moreover, even if we assume that these simplifying hypotheses are

valid, it is necessary to take into account that our information on variances, correlation

functions and random observational errors was obtained from some sample and is, like any

statistical information, subjected to sampling errors. As a result, the statistics used in the

averaging procedures may substantially differ from real ones, and the procedures may

therefore not lead to the minimal error.

To stress this point, Norman Phillips proposed in his famous paper on the optimal

interpolation (Phillips, 1976) to use the Russian superlative form optimalneishy for the

estimates of the optimal interpolation accuracy under the assumption that the statistics

used precisely describe the reality. He also analysed the consequences of the fact that the

optimal interpolation is never optimalneishy.

Another wording, applied by some specialists, is to use the term statistical

interpolation instead of optimal (or optimum, as proposed by Norbert Wiener, 1949)

interpolation. Unfortunately, this terminology leads sometimes to a false impression

among non-specialists that results of such an interpolation are expressed in statistical

terms, while in fact, they are, of course, univalued.

The influence of inaccuracies in statistical information on the optimal interpolation

results was investigated both theoretically and empirically comparatively long ago (e.g.,

Gandin, 1963). The overall conclusion is that this factor may cause a substantial decline in
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the interpolation accuracy, particularly if the interpolation is multivariate. Recent

investigations by A. Hollingsworth and P. Lonnberg (1986) and by H. Mitchell et al.

(1990) confirmed this conclusion: they demonstrated that improvements in the

approximation of statistical structure result in marked improvements in objective analysis

and, thus, in numerical weather prediction.

Considering the same problem for the optimal averaging, it is necessary to realize,

first of all, that all results presented in Sections 4 and 5 of this Office Note are valid under

an idealized assumption that the information on statistical structure and random

observation errors of the parameter in question, which is used in the course of the optimal

averaging and the accuracy estimates, exactly reflects reality. In order to quantitatively

evaluate the influence of this assumption, one can perform the following numerical

experiments.

Let us assume that some statistics, used for the computation of optimal averaging

weights, were different from the actual ones (which, just for these experiments, are also

assumed to be known). Such averaging is thus not an optimal one, and its RMS error

should be therefore computed by the "complete" equation (16), rather than by (20). To

procede this way, we have first to construct a system (19), using the wrong pt, ~ and/or fl.

Solution of this system gives us the vector of wrong weights wi. This weights should be

then substituted into the equation (16) along with correct statistics, in order to compute

the RMS error of such, non-optimal, averaging. Finally, we have to compare this error

with that obtained from equation (20) (or 16) using correct weights, i.e., those obtained

from the system (19) with correct statistics.

Results of some computations of this kind are shown on Figs 24 and 25. Only the

RMS observation error r1 was assumed to be wrong in experiments resulted in Fig. 24,

while the correlation function g(r) was assumed to be correct. The two curves on Fig. 24

are for our two "standard" values of correct i 2 = .05 (modelling the use of climatological
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norms as the background field) and .5 (for the use of forecast first guess). As the lower

curve shows, an error in T! does not result in any substantial loss in the averaging accuracy

as long as the actual (normalized) RMS observation error is small. The only danger,

demonstrated by the upper curve on Fig. 24, may arise when TI is rather large and strongly

underestimated when computing weights. This means, particularly, that if averaging

deviations from the forecast first guess, one should assign a proper value of TI, much

larger than that for anomalies. It is safer under such circumstances to overestimate TI than

to underestimate it.

The second series of numerical experiments reported here dealt with erroneous

values of the correlation radius, R (which leads to errors not only in g, but in ~ and [3 as

well) while the TI value was assumed to be correct. Some results of these experiments are

presented on Fig. 25. The independent variable in this figure is a correlation scale

parameter SP defined as

[1- R~cRa < RC
SP a Ra< (48)

l Ra -1 Ra > Rc,

where Rc=l is the correct value of the correlation radius, and Ra is its assumed value for

the weight computation. Positive SP values thus correspond to overestimated correlation

radius, while negative ones reflect its underestimation.

It is seen on Fig. 25 that very large errors in the assumed correlation radius may

substantially diminish the optimal averaging accuracy, particularly when the normalized

RMS observation error is small. Errors of such size, however, practically never happen.

So, points with SP= +3 on Fig. 25 correspond to the cases when the correlation radius is

overestimated or understimated four times, while in practice, even a 50% error in the
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correlation radius (reflected by ISPI=0.5) is considered as very large one. One may add to

this, that errors in the correlation radius represent an extreme case of incorrect correlation

statistics. What happens more often is an erroneous representation (e.g., approximation)

of the correlation function with the same, or almost the same radius of correlation. The

influence of such errors is, naturally, less than of those considered above.

The general conclusion from the estimates presented in this section is that the

influence of inaccuracies in underlying statistics on the optimal averaging is much weaker

than is the case for the optimal interpolation and, particularly, for the optimal

differentiation. This conclusion is by no means unexpected: it is natural that the spatial

integration diminishes sensitivity to statistical structure, while the spatial differentiation

increases this sensitivity.
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Fig. 25. Area-averaging accuracy
with incorrect correlation radius
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7. DISCUSSION AND CONCLUSIONS.

Although the area-averaging model used in this Office Note is rather simplified,

there is little doubt that basic conclusions following from results of our computations with

this model are applicable to much more general conditions of averaging a meteorological

parameter over an area. Many of these conclusions are known from previous

investigations and summarized in K79.

There is, however, at least one new topic, which has never been considered before.

This is the application of forecast first guess as the background field in the course of area-

averaging. All methods used so far for this purpose, including the optimal averaging, dealt

either with anomalies or with "full" values. Moreover, initial values, subjected to area

averaging, were usually those already averaged in time, like monthly mean values or

anomalies.

No objections should be made, in principle, against spatial averaging of temporally

averaged values, particularly if one is interested in detecting a small signal like the climate

change. However, the statistical information, which is needed in order to estimate the

accuracy of averaged values and/or to perform the optimal averaging is inevitably based

on much smaller samples for temporal means than for instantaneous values and is therefore

subjected to higher sampling errors. In addition to that, the instantaneous area-averaged

values may be of interest for some problems other than that of detection the climate

change.

Much more important, however, is the mere fact that the area averaging accuracy

of increments (i.e., deviations from the forecast first guess) is substantially higher than that

of anomalies, just like this is true for the optimal interpolation used in objective analysis of

meteorological fields. It is necessary to stress in this respect that, while a simple

arithmetic averaging of anomalies may lead to an acceptable estimate of the area-mean
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value, particularly over a small domain, there is practically no alternative to the optimal

averaging when the increments are being dealt with.

One certainly has to realize that the application of the forecast first guess as a

background field makes the results of optimal averaging model-dependent, just as is the

case with the optimal interpolation. Being practically negligible over regions with

sufficiently dense observation network, this factor can play an important role if the density

of observations or their accuracy is very low. This may be particularly dangerous for the

problem of detecting any climate change (independently of whether the averaging is or is

not applied for that): systematic errors in the numerical forecasts--the so-called biases--

may create a false impression about climate changes over a data-poor region. As long as a

bias does not persist over a large area, the averaging diminishes this danger, but it may still

exist.

Another complication to be mentioned in this respect is that the RMS errors of

averaging the increments are lower than those for full fields because of the random errors

in the forecast first guess. Still, it is well known that the optimal interpolation of

increments results in more accurate objective analyses of full fields than that of anomalies.

There is little doubt that the same is true for the optimal averaging.

The area averaging of increments may be, at least in principle, performed in the

course of operational objective analysis. It is much more convenient, however, to include

it into the Climate Data Assimilation System (CDAS), now under design at NMC, because

the CDAS is free of severe time limitations accompanying operational procedures. Even

more promising, particularly for the problem of climate change, is the incorporation of

optimal area-averaging procedures into the NMC Reanalysis (Kalnay and Jenne, 1991).

The idea of reanalysis is to perform anew objective analyses of past data applying a

modem data assimilation system which uses an advanced numerical weather prediction

model to produce first guess fields for all analyses. Undoubtedly, the application of the
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Reanalysis System to a sufficiently long time sequence of global meteorological data is the

best way to empirically investigate the global climate change, and the optimal averaging

over some selected areas, or even over the whole globe, may be used in order to facilitate

the detection of small climate change on the background of high natural weather

variability. The availability of forecast first guess fields in the course of reanalysis allows

us to perform the optimal averaging of increments and thus to achieve a higher accuracy.

One has to realize, when designing such procedures, that the optimal area-

averaging is a more complicated process, at least from technical point of view, than the

optimal (or any other) interpolation into points of a regular grid performed in the course

of objective analysis. There is a natural way to limit the order of matrices for the optimal

interpolation by selecting data from comparatively few observation points surrounding a

grid point, and nothing like that exists for the optimal averaging. The order of matrices

involved in the latter may be therefore quite high, particularly for averaging over large

areas.

Two methods to avoid this difficulty have been proposed and applied. One

approach is to perform first the interpolation into a regular grid and then to average

arithmetically the grid point values over the area. Some authors even call this approach

the optimal averaging (e.g., Weber, 1992). One may argue that this two-step approach

must lead to less accurate results, particularly for areas non-homogeneously covered by

observations. However, as demonstrated by Kagan (K79), the results of such approach

are usually very close, at least for anomalies, to those of the "one-step" optimal averaging.

The main objection against the two-step approach is therefore that there are practically no

ways, using it, to estimate the averaging accuracy, while such estimates are produced

automatically, as a by-product, in the course of optimal averaging.

Another way, also investigated by Kagan (K79), may be called an averaging "by

parts": in order to obtain a value averaged over a large domain, one may perform the
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optimal averaging over several parts of the domain and then average the results

arithmetically. Once again, such procedure must be, in principle, less accurate but, as

shown in K79, its results for anomalies are usually close to those of the optimal averaging

over the whole domain; and again, the main objection against the averaging by parts is that

it is very difficult, if not impossible, to estimate the accuracy of its final results.

The information on the averaging accuracy is of particular importance for the

problem of detecting climate changes because it allows us to estimate our degree of

confidence in any detected change. It is highly desirable therefore, when dealing with this

problem, to apply the averaging over selected areas directly and in one step. As to the

danger caused-by the application of high-order matrices, it is minimal for averaging

increments because of strong diagonal predominance in matrices involved. One may add

to this that a simple way exists to diminish the matrix order if the density of observation

points is quite high over some part of the averaging domain (or over the whole domain):

one can diminish the density over such regions by simply ignoring data at some points or

superobing them. As follows from results presented in Section 5 of this Office Note, such

a procedure will practically not influence the estimates of area-averaged values or of their

accuracy.

Another complication of the optimal averaging in comparison to the optimal

interpolation is caused by the fact that multi-dimensional integrals of the point-value

correlation function are involved: the cross-correlation function between point and area-

mean values is expressed by the two-dimensional integral, and the variance of the mean

value - even by the four-dimensional integral of the point-value correlation function. In

contrast with the "toy example" considered in this Office Note, the only way to practically

compute these integrals is to apply numerical quadrature methods. It is worthwhile to

mention in this respect that, unless the averaging area is a circle, the cross-correlation

function is non-isotropic, it depends on both coordinates of the point with respect to, say,
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the center of the averaging domain. Numerical experiments, designed and performed

recently by D. Deaven (pers. comm.), have demonstrated, however, that this does not

create much problem if proper numerical methods are used. It will be also not difficult to

include the area averaging of the forecast first guess fields, which is needed in order to

obtain averaged values of parameter itself from those of its increments. One may use

forecast data either in the form of spherical harmonic coefficients or at regular grid points

to perform these computations.

A minor additional complication may be caused by the fact that the variance of the

parameter in question is often not constant over a selected area, but varies geographically

within the area. The so-called generalized homogeneity and isotropy hypothesis should be

then used. It assumes that only the correlation function of such parameter is

homogeneous and isotropic, while the covariance function is not. It is not clear to what

extent this effect is important for performing the area averaging and/or for estimating its

accuracy. In any case, however, it will be not difficult to correspondingly generalize the

optimal averaging algorithm.

The numerical computations outlined may be essentially simplified if the averaging

will be always done over the same set of domains, as it will be the case for CDAS and

Reanalysis system. For each domain, the equation, expressing area-mean first-guess value

in terms of harmonic coefficients or grid-point values, will be universal, not depending on

time (as long as the model horizontal resolution remains unchanged). Even more

important, the four-dimensional integral expressing the variance of area-averaged values

needs to be computed only once for the whole period of stationary statistics (like a month

or a season). The same may be done, at least in principle, for the cross-correlation (or

normalized covariance) function: it may be computed beforehand and approximated in one

or another way or tabulated for its use in the averaging. Most probably, however, this

simplification will not be needed because, as D. Deaven demonstrated, the two-
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dimensional quadratures involved in computations of the cross-correlation may be

performed quite fast.

The most unclear is the situation with the temporal averaging of area-averaged

values that should be performed in the course of reanalysis or after it. The optimal

averaging in time is quite analogous, by its properties, to the area averaging and is

technically simpler because of its one-dimensionality. What is needed, however, is the

temporal averaging of area-averaged values (or vice versa). Results presented and

discussed in this Office Note suggest that a simple arithmetic temporal averaging of values

averaged over large areas can provide sufficient results, although a more detailed study is

desirable, particularly for the averaging of increments. The point is, however, that we

need not only such twice averaged values themselves, but also estimates of their accuracy.

This would not pose a problem if reliable information on the spatial-temporal

statistical structure of meteorological parameters were available. Unfortunately, this is not

the case. Almost all existing data of that kind are obtained using so-called separation of

variables (or factorization). In other words, the spatial-temporal correlation is assumed to

be a product of spatial and temporal correlations. Independently of the degree of accuracy

achievable with such approximation, it hardly can be used for our purposes: it immediately

follows from the separation assumption that the temporal correlation between spatially

averaged values does not differ at all from the temporal correlation of point values (and

vice-versa). At the same time, it is intuitively clear that the spatial averaging should

increase the temporal correlation, although the quantitative aspect of this effect is not well

known.

Perhaps, the best way to approach this problem is just to investigate the statistical

structure of area-mean values in the course of reanalysis (and/or when applying the

CDAS). Information obtained this way may be then used in order to estimate the
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accuracy of spatial-temporal averaging and, maybe, even to improve the temporal

averaging of spatially averaged values.

The last, but far not the least important, question to be discussed here is which

parameter or parameters to average. The methodology outlined in this Office Note is

applicable to any scalar parameter whose statistical structure may be assumed

homogeneous and isotropic over an area in question and is known, as is the case for

temperature and isobaric height. It will be not difficult to develop a slightly more general

method allowing the area averaging of vector fields, like the wind field.

The most challenging task is, however, to average those meteorological and

hydrological parameters for which the point values by themselves are not representative

enough, like humidity and, particularly, precipitation. This is far from being a simple

problem, not only because statistical structure of such parameters is not well known, but

also because their probability distribution essentially differs from the normal (Gaussian)

one. Strictly speaking, the normal distribution is a necessary condition for any method

based on the mean square error minimization. At the same time, the probability density

curve for precipitation sums over a small interval, like 12 or 24 hours, is not only far from

normal, it usually has a singularity at zero. This means that the precipitation values should

be first summed up (or averaged) over larger intervals of time, and their statistics should

be investigated and applied only after that. Some investigations of this kind have been

already undertaken (see, e.g., K79).

Another interesting possibility is to apply the area averaging method not to

observed quantities themselves, but to some of their vertically integrated values, like the

so-called precipitable water, which is a vertical integral of humidity, or layer-integrated

horizontal mass fluxes. The area averaging may be also applied to various differential

characteristics, like vorticity and divergence. Statistics needed for this may be derived

from those for the wind vector. One may mention in this respect that the area-mean
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vorticity is proportional to velocity circulation along the boundary of the area and,

analogously, the area-mean divergence is proportional to the mass flux across the

boundary. These quantities can be also integrated along the vertical.

The general conclusion from this discussion is that there exist many possible

applications of the optimal averaging in the course of CDAS and Reanalysis projects. The

task is to select most promising among such applications, particularly for the problem of

global climate change.
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