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ABSTRACT

While forecast models and analysis schemes used in numerical weather prediction have

become generally very successful, there is an increasing research interest toward improving forecast

skill by adding extra observations either into data sparse areas, or into regions where the verifying

forecast is most sensitive to changes in the initial analysis. The latter approach is referred to as

"targeting" observations.

In a pioneering experiment of this type, the U.S. Air Force launched dropwindsondes over

the relatively data sparse Northeast Pacific Ocean during 1-10 February 1995. The focus of this study

is the forecast sensitivity to initial analysis differences, forced by these observations by using both

the adjoint and quasi-inverse linear methods (Pu et al. 1997a and b), which are both useful for

determining the targeting area where the observations are most needed. We discuss several factors

that may affect the results, such as the radius of the mask for the targeted region, the basic flow and

the choice of initial differences at the verification time.

There are some differences between the adjoint and quasi-inverse linear sensitivity methods.

Using both sensitivity methods, it is possible to find areas where changes in initial conditions lead to

changes in the forecast. We find that these two methods are somewhat complementary: the 48-hr

linear sensitivity is reliable in pinpointing the region of origin of a forecast difference. This is

particularly useful for cases in which the ensemble forecast spread indicates a region of large

uncertainty, or when a specific region requires careful forecasts. This region can be isolated with a

mask and forecast differences traced back reliably. It can also be used to trace back observed 48 hr

forecast errors. The 48-hr adjoint sensitivity, on the other hand, is useful in pointing out areas that

have maximum impact on the region of interest, but not necessarily the regions that actually led to

observed differences, which are indicated more clearly by the quasi-inverse linear method (QILM).

At 72 hrs the linear assumption made in both methods breaks down, nevertheless the

backward integrations are still very useful for pinning down all the areas that would produce changes

in the regions of interest ( QILM ) and the areas that will produce maximum sensitivity (adjoint

method). Both methods could be useful for adaptive observation systems.
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1. Introduction

Numerical weather prediction (NWP) is a classical initial-value problem. It has been recognized

that forecasts are very sensitive to both initial errors and model errors (Lorenz 1963; Chou 1986;

Reynolds et al. 1994). In the last decades, numerical weather prediction advanced rapidly through

modeling research focused on advances such as the use of dynamics of the primitive equations, better

numerical algorithms, advanced physics parameterization, higher resolution models, and optimal

adjustment of model parameters (e.g., reviews in Chou 1986; Haltiner and Williams 1980).

Considerable work also took place on objective analysis of observations and on model initialization

(e.g., Gandin 1963; Sasaki 1958; Lorenc 1981, 1986). As models improved, it has been generally

accepted that serious forecast failures are largely associated with analysis errors that amplify rapidly

and less so with model deficiencies (Reynolds et al. 1994; Simmons 1995). In order to enhance

forecast skill further, much current research has been focusing on development of advanced analysis

methods such as variational data assimilation (e.g., LeU Dimet and Talagrand 1986; Derber 1987 &

1989; Navon et al. 1992; Andersson et al. 1996) and Kalman Filtering (Ghil et al. 1981; Cohn et al.

1994). Currently 3-dimensional variational data assimilation (3D-VAR) has been implemented

operationally at NCEP and ECMWF, and has been very successful in the efficient use of non-

traditional observations such as satellite radiances (Derber et al. 1991; Parrish and Derber 1992;

Andersson et al. 1996). The Four-dimensional variational data assimilation (4-D VAR), a technique

based on the adjoint of the forecast model and which constrains model forecasts to fit multiple-time

observations has become a popular research topic in the last decade. Although it is computationally

very expensive (Courtier et al. 1994; Zupanski and Zupanski 1996), operational implementation may

be possible in the near future at some forecast centers. Some work has also focused on developing

simplified 4-D VAR techniques, based on adjoint or quasi-inverse forecast sensitivity ideas (Zupanski

1995; Rabier et al. 1996; Pu et al. 1997 a, b), in order to improve forecast skill (Pu et al. 1996 and

1997 a, b; Huang et al. 1997) and make it operationally feasible (Wang et al. 1997; Kalnay and Pu

1997). Kalman Filtering is computationally even more expensive than 4-D VAR, so effort is also

being made to develop computationally feasible approximations (e.g., Cohn et al. 1994; Toddling

et al. 1997).
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Advanced data assimilation methods have proven able to extract information more effectively

from current observations. Derber and Wu (1996) made major improvements in forecast skill by

replacing the assimilation of satellite sounding retrievals by the direct assimilation of radiances into

the NCEP 3-D VAR scheme. There is also evidence that the analysis can be improved by the

assignment of more realistic observation errors. Wu and Joo (1996) improved the analysis quality

of NCEP 3-D VAR system by reducing some of the observation error variances which were

evidently somewhat overestimated. Pu et al. (1997c) reduced observational error variances in areas

of large forecast ensemble spread as a shortcut toward increasing the forecast error covariance in

areas where the ensemble indicates that the first guess has large uncertainties. Experiments indicated

that this approach, which allowed for flow-dependent error covariances, had positive impact on the

analysis and the forecasts. In a related work, Kalnay and Toth (1994) showed that minimizing the

distance between observations and the first guess along the bred vectors, resulted also in positive

forecast impacts.

Even though improved analysis methods can make better use of currently available

observations, an obvious alternative approach to improving the initial conditions is to increase the

observational data base. Currently, Northern Hemisphere oceans and most of the Southern

Hemisphere have few in-situ observations such as rawinsondes, and instead have coverage from

satellite observations (e.g., TOVS temperature soundings, cloud- and water vapor- tracked winds,

surface winds from scatterometers and microwave instruments). Although the use of data from

remote sensing instruments has improved substantially the accuracy of the forecasts in the Southern

Hemisphere, in-situ vertical profiles of winds, temperatures and moisture such as those obtained from

rawinsondes or dropwindsondes are still the most effective observations for numerical weather

prediction.

There are two obvious strategies for improving the current coverage with vertical soundings:

1) add soundings uniformly in oceanic areas such as the Pacific Ocean, where few rawinsondes are

available, and which is upstream of an area of interest (North America); and 2) put them only in

those areas which are not only data sparse and upstream of the region of interest, but also where

there is evidence of fast error growth. The second approach, denoted as an "adaptive observing

strategy", is based on the evidence that error growth is flow dependent (Pu et al. 1997c), and that it
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is more efficient to spend the resources available for observations in the relatively small regions where

fast error growth takes place. A strategy for targeted weather observations in upstream areas has

been designed for the Fronts and Atlantic Storm Track Experiment (FASTEX), with additional drops

of atmospheric soundings in areas showing maximum potential impact in the targeted area of interest

near the British Isles. Adaptive observation strategies could also be useful for satellite observing

systems, if they are designed in such a way that they could dwell on regions where observations are

most apt to be useful.

During February 1-10 1995, the U.S. Air Force 53rd Weather Reconnaissance Squadron

C-130 aircraft flew a total 9 dropwindsonde missions over the Northeast Pacific Ocean, upstream of

North America, where in situ data are sparse. The missions were designed to place the

dropwindsondes in the region where, subjectively, positive forecast input would be expected over

North America. In a preliminary evaluation, Lord (1996) showed that the dropwindsonde data

resulted in an overall positive impact on the synoptic-scale weather forecasts. In this paper we

summarize and further analyze the impact of these data and focus on the relationship between the

forecast sensitivity and targeted weather observations. As in Pu et al. (1997 a, b), the forecast

sensitivity to changes in the initial conditions will be investigated using the adjoint of the NCEP global

tangent linear model and the quasi-inverse linear model. The forecast initial errors will be traced

back from the difference between forecasts with and without dropwindsondes. These results are used

to confirm the impact of the dropwindsonde observations on weather forecasts, and to recognize the

relationship between the local forecast error and initial analysis impact. A local mask in the

verification area is introduced and results of the forecast sensitivity in this area compared with the

known analysis changes.

The organization of this paper is as following: section 2 describes the results from U.S. Air

Force dropwindsonde experiment. The sensitivity methods using adjoint and quasi-inverse models

are described in section 3, and the use of a local mask is also discussed. In Section 4 we perform the

sensitivity experiment for two cases, one representing a large positive forecast impact, and the other

a null forecast impact. Additional experiments performed testing several factors which may impact

the targeting area, and comments on strategies for targeting observations are presented in section 5.

Section 6 is a summary and discussion.
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2. Impact of dropwindsondes on the synoptic weather forecast

During 1 - 10 February 1995, the United States Air Force Reserves (AFRES) 53rd Weather

Reconnaissance Squadron (WRS) flew 9 reconnaissance missions with WC-130 aircraft over the

Northeast Pacific Ocean off the coast of Oregon, Washington and northern California in the region

bounded by 30-60 N, 125-155W (Fig. 1). The flight patterns for each mission were determined daily

by forecasters from the National Centers for Environmental Prediction (NCEP), the Seattle Weather

Forecast Office, and NOAA researchers. A total of 126 sondes was dropped over the 9 missions.

Measurements of wind and thermodynamic variables were transmitted in real time to NCEP and

covered the layer from approximately 300 hPa (flight level) to the surface. The number and initial

time of those soundings which match to the NCEP standard analysis time were listed in table 1. All

those data will be used in the evaluation.

The impact on synoptic-scale forecasts over the United States of these dropwindsonde

observations was evaluated by Lord (1996), using the NCEP operational T126/L28 global spectral

model and Global Data Assimilation System (GDAS), based on the spectral statistic interpolation

(SSI) system (Parrish and Derber 1992). A control run was performed by running the GDAS over

the period 12 UTC 31 January 1995 - 00 UTC 14 February after removing all dropwindsonde data

from the operational data files. The experimental run included all dropwindsonde data. Verifications

for each run were performed by comparing 24, 48 and 72 hour forecasts with corresponding analyses

over much of North America (65-125W, 25-65N, Fig. 1). The impact of the supplementary

dropwindsonde data is summarized by a time series of the standard deviation of the 500hPa height

forecast error (Fig. 2), showing that there is a large positive impact on 12 UTC 7 February and

00UTC 8 February. These impacts increase considerably with forecast hour and amount to about a

20% reduction in forecast error at 48 and 72 hours. Smaller positive impacts are registered at 00

UTC 1 February and 00 UTC 9 February. There is little or no impact at the other times, which

constitute a majority of the cases (5 out of 9). Verifications of wind fields showed positive impact,

especially at 24 hours (not shown). There was no impact on standard precipitation scores.

The large variability of forecast impact implies that the effectiveness of observational input
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to the analysis has a critical dependence on the synoptic situation. Therefore, it is important to

understand how the differences in the analysis affect the forecast differences, and in which situation

the dropwindsondes would cause positive impact on future forecasts. In the following section, we will

focus on the forecast error sensitivity analysis by tracing the forecast differences back to the initial

condition in order to understand how the dropwindsonde data relates to the forecast error.

3. Sensitivity of forecast differences to changes in initial conditions: General Description

of the method

3.1. forecast sensitivity with the adjoint and the quasi-inverse methods

Assume that at time t, for a nonlinear forecast model M, the forecast differences between two

forecasts started from two different initial condition Xo and Xo+6 Xo are defined as:

8X=Mt(Xo +6X)-M(x) M(1)A)

For a perfect model and sufficiently small forecast differences and short time scales, the

forecast difference can be approximated by the propagator L or tangent linear model (TLM) of the

model M:

6X=LaXo (2)

Forecast errors may be traced back to errors in the initial conditions by two methods: the

adjoint (ADJM, hereafter. e.g. Rabier et al. 1996; Zupanski 1995; Pu et al. 1997 a) and the quasi-

inverse linear method (QILM, hereafter. e.g. Pu et al. 1997b).

a) adjoint approach (ADJM)

As in Rabier et al. (1996) and Pu et al. 1997a, we define an error cost function (using for

example a total energy norm) J.
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0
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where, bX= (C, D, T, II ) denotes differences between two forecast for vorticity, divergence,

temperature and natural logarithm of surface pressure respectively. Tr, Pr are the reference

temperature and pressure, Ra is the gas constant for dry air, Cp is specific heat at constant pressure

for dry air. P represents the horizontal integration domain. W is the matrix of weights defining the

norm. The weights are a function of T, P , Ra, and Cp. r is the vertical coordinate. The superscript

T denotes the transpose of a matrix. V represents the gradient operator and A represents the

Laplacian operator.

The gradient of cost function J respect to initial condition Xo can be computed by the adjoint

operatorsLT of the tangent linear model L:

VXJ=L TWLpX=L TW(M(Xo +5Xo)-M(Xo)) (4)

The gradient can therefore be obtained by integrating the adjoint model backwards once. i.e.,

starting from the forecast differences at final time t to the forecast initial time 0. It gives the

"optimal" direction that results in the maximum decrease of the cost function for a given size

perturbation. The gradient itself is called the "sensitivity pattern". In order to change the initial

conditions, it has to be multiplied by an appropriate amplitude (Derber 1987) or a preconditioning

matrix (e.g., Zupanski 1995).

b) Quasi-inverse linear method (QILM)

Pu et atl. 1997b introduced a second approach: solve (2) directly by approximating the inverse

of the TLM L:
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In practice, we approximate L- by the "quasi-inverse" method: simply run the TLM backwards by

changing the sign of At, while also changing the sign of the dissipative terms to avoid computational

instability (Pu et al 1997b). Since dissipation is generally small except near the surface, this approach

provides quite an accurate approximation of the exact inverse of the TLM and, therefore, a good

approximation to the exact solution of (2) (Pu et al. 1997b; Wang et al. 1997; Reynolds and Palmer

1997). Note that if the adjoint approach (4) is iterated successfully, it should eventually converge to

the same solution as the exact linear inverse (5), i.e., a cost function equal to zero.

3.2 Forecast model and its tangent linear and adjoint model

The model used for the sensitivity analysis is the NCEP operational global spectral model

(known as medium range forecast or MRF model) with horizontal resolution.T62 and 28 sigma levels.

An adiabatic version of this model with a minimum set of physics ( horizontal diffusion, vertical

mixing and surface drag) is the basis for the adjoint and TLM and is the same as used in Pu et al.

1997 a, b.

3.3A local mask

In earlier studies concerning the forecast sensitivity analysis, we took the global forecast error

as an initial condition and then integrated both adjoint and quasi-inverse linear model backwards to

the forecast initial time. However, the current adaptive observation problem, the forecast area we

are targeting is a specific region, and it is necessary to find the area of sensitivity affecting this area.

The Northern Hemisphere north of 30N as verifying area for the generation of ensemble

perturbations Buizza (1994) used, which was also used for forecast sensitivity studies in Rabier et

al (1996). Langland and Rohaly 1996 and Kalnay et al 1996 suggested the use of a local mask

operator S over the area of verification:

6bXlocal=SbXlglobal (6)
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The mask operator S gives a non-zero weighting inside the targeted region and a zero

weighting outside so that forecast perturbations in the targeted area are retained and perturbations

in other regions are removed. Here we use a mask filter defined by a F function (Abramowitz and

Stegun 1965; James Purser, personal communication) which gives the largest weight (equal to 1) in

the central area of the mask and smoothly reduced weight to zero at the mask boundary. This

distribution minimizes possible imbalances at the boundaries ofthe targeted region. The effect of

the mask operator on the cost function is calculated by multiplying the original weighting factor W

- in (3) by the geographically varying mask weight. As a result, the cost function became local even

though it is still calculated globally. For the QILM (5), there is no-cost function but the initial global

forecast perturbation is multiplied by the same mask. Therefore, the backward integration traces the

forecast error from the specified region.

4. Forecast sensitivity with dropwindsonde observations

Two cases representative of extremes in forecast impact were chosen for this forecast

sensitivity analysis. The first one (0000 UTC 8 February) had a major forecast impact over the U.S.

and the second (0000 UTC 3 February) had no impact over the U.S. (Fig.2). The mask (6) was

applied to differences between two global forecasts, one initiated from the analysis that used all the

dropwindsonde data, and the other one from the analysis without any dropwindsonde data. The

masking region (Fig.3) which has a radius of 1000km and is centered at 45 N, 95W covered a large

fraction of the verification area (Fig.1). The adjoint or quasi-inverse linear model were integrated

backwards to the initial time.

4.1 00 UTC 8 February case

We first take differences in 48-h forecasts (a" 48-hr window ") (for which the linear

assumption used in the linear and adjoint models is fairly valid) and then a 72-h window, for which

the forecast differences begin to be nonlinear but for which this methodology can still provide useful

guidance for targeted observations.

Fig. 3 shows the 48-h and 72-h global forecast temperature differences at sigma level 7

(about 850mb) for initial condition at 00 UTC 8 February. They show large differences mostly over
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North America that move eastward with time( Similar features also observed in wind field; figure not

shown). Masked differences are shown in Fig.4. Taking these forecast differences in the mask region

as initial conditions, we performed backwards integration for both of adjoint and quasi-inverse linear

models.

Sensitivity patterns obtained from the ADJM and sensitivity perturbation obtained from

QILM for temperature at the initial time ( 0000 UTC 8 February) (Figs. 5 a, b) agree generally with

analysis differences (Fig.5c), with QILM having slightly better agreement. Both show maximum

amplitude in the perturbation below 700 hPa around 140W-150W. The analysis difference and quasi-

inverse perturbation have both secondary maxima in the upper troposphere, a feature which is absent

from the adjoint sensitivity. The adjoint sensitivity is very compact, going from essentially zero to

the maximum value very sharply when compared with the linear inverse or the analysis differences,

and it shows an extremely strong baroclinic tilt at low levels, also observed in other studies (Buizza

and Palmer 1995). The amplitudes in the quasi-inverse linear temperature differences are smaller than

those of the analysis by a factor of about 3 but more than an order of magnitude smaller for the

adjoint sensitivity. For the vorticity differences(Fig.5d-f), the agreement with analysis differences

reasonablely good for QILM, although the amplitudes are again about a factor of 3 smaller. Both

differences show a maximum perturbation centered around 145W, with low and upper level maxima.

The adjoint sensitivity in the vorticity is quite different from the other two, with little overlap in the

area of perturbation of the analysis or the linear sensitivity, and the magnitude is an order of

magnitude smaller than for the temperature.

The same experiment was also performed for 72 hours forecasts, starting from the differences

between the forecasts with and without the dropwindsondes, masking the differences in the same

region as in Fig. 3 with the mask radius 1000 km, and integrating both the quasi-inverse linear and

adjoint model back to initial time. The results (not shown) are qualitatively very similar to those of

48 hrs, except that the sensitivity fields are slightly more extended in the horizontal and vertical.

The adjoint sensitivity, like the singular vectors with which it is closely associated, is strongly

dependent on the choice of the norm (Rabier et al. 1996; Palmer et al. 1997). The energy norm is

known to produce very small amplitude wind or vorticity perturbations, which are far from quasi-

geostrophic balance (Szunyogh et al. 1997). Our results confirm these earlier studies, and indicate
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that the low weights given to the vorticity compared to the temperature in the energy norm defining

the cost function (3) do not result in realistic sensitivity patterns. If instead of total potential energy

we were using available potential energy, it would probably result in a more balanced sensitivity

pattern. Because the vorticity fields are so small in adjoint sensitivities, and in order to display the

sensitivity field more clearly with the different methods, in most of the following experiments we will

show the sensitivity field for the temperature field only and only discuss vorticity in the text.

Considering that the dropwindsonde is a vertical sounder throughout the troposphere, we

define the vertically-averaged squared vorticity and squared temperature fields from model levels 7-

18 (sigma 0.845-0.210) to represent the sensitivity signal. Fig. 6a-c show the vertically averaged

squared temperature differences field for the quasi-inverse linear (Fig.6b) and adjoint (Fig.6a) at

initial time for 48 hr window calculations. Fig.6c showed the corresponding analysis difference at

initial time. There is excellent agreement between the quasi-linear and adjoint sensitivities for

temperature; they both indicate an area south of Alaska that corresponds closely to the area of

largest, as well as smaller centers on the West Coast of North America and Northern Canada not

apparent in the analysis differences. For the squared vorticity, however, the adjoint sensitivity is

much smaller in magnitude, and does not have much geographical overlap with the analysis

differences (not shown).

Fig. 7a-b show the sensitivity fields for the squared temperature for a 72-h windows. By 72

hours the linear assumption used for both the quasi-inverse and adjoint linear models are clearly

violated; nevertheless the results, though less compact, are still encouraging. The areas pointed out

by both 48 and 72-h quasi-inverse both include the area south of the Gulf of Alaska where the

analysis differences are maximum (Fig.6c). However, at this longer range both the linear and the

adjoint sensitivities indicate an area further upstream centered at the dateline and 35N, which is not

apparent in the analysis differences (Fig.6c). In the squared vorticity differences, the adjoint has much

smaller amplitudes, and does not have the corresponding central Pacific upstream area. The fact that

both methods agree in pointing out additional areas upstream suggests that additional sondes

dropped as far west as the dateline would have further improved the 72-hour forecast over the US.
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4.2 00 UTC 3 February case

Although 0000 UTC 3 February is a case of virtually no impact over the U.S. region (Fig. 2)

and there were only two dropwindsondes at this analysis time, the impact of the data on the analysis

and forecast in area where the soundings were taken is still large for both wind field and surface

pressure field (Fig.8) compared to other times. As with the case of large impact of February 8, we

computed the forecast sensitivity starting from the 48 hr forecasts with and without dropwindsondes,

and masked their difference over the US, with a 1000km mask centered at 45N, 95W, as in Fig. 3b.

Fig. 9 shows the sensitivity initial differences calculated from the 48-h forecast differences

for the vertically averaged squared temperature. The quasi-inverse linear method shows only a small

sensitivity area overlapping the regional of analyzed temperature differences. The adjoint places an

area of temperature sensitivity south of the analysis difference, and another stronger area of

sensitivity in NW Canada as does the quasi-inverse linear sensitivity.

When the sensitivities are computed from 72-h forecasts, results are similar to those of 48-h

(Fig. 10a-b). Even at 72-h the linear method indicates correctly that the small forecast differences

over the US are due in part to changes over the Gulf of Alaska, but it also suggests that larger

sensitivity comes from other regions such as the West Coast, the Arctic region north of Alaska, and

the subtropical Pacific. The adjoint approach shows no sensitivity in the Gulf of Alaska, indicating

that initial analysis differences in that area would not grow as they evolved over the US. The 72-h

adjoint result also shows areas of sensitivity North of Alaska and in the subtropical Pacific and agrees

well with the 48-h adjoint sensitivity.

Fig.ll show that the 48-h forecast differences of temperature for the case of February 3 are

indeed quite small over the US, and larger over the Northern Canada. Vorticity differences had a

similar pattern (not shown). To investigate their sensitivities, we repeated the backward experiments

with a 500km mask centered over the Northern Canada (65N, 105W). The 48-hr sensitivity results

(Figs. 12a-b) show that for the area of Northern Canada, where there were larger forecast impacts

than over the US, the temperature differences in the linear sensitivity are consistent with observed

differences (Fig.9c). The adjoint sensitivity is relatively small in magnitude but the sensitivity area

still shows good agreement with the linear sensitivity. The excellent agreement between the sensitivity

and analysis differences indicate that the dropwindsonde data on this day were beneficial to the
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forecast in Northern Canada rather than to the U.S. region where they had a null impact.

5. The impact of some choices in the computation of the forecast sensitivity

In this section we explore several factors which could have an effect on the sensitivity

calculation. First, as we have seen, in a case of large impact the adjoint sensitivity and quasi-inverse

linear sensitivity point out the same sensitivity region, but in a case of low impact, the sensitivity area

calculated from two methods can look quite different. In our earlier studies concerning the forecast

error sensitivity (Pu et al. a, b), we pointed out that the sensitivity patterns computed from the two

methods have different properties. The adjoint sensitivity is dominated by the fastest growing singular

vectors and as such depends very strongly on the type of norm used (Errico and Vukicevic 1992;

Palmer et al. 1997). If the energy norm is used, as in the majority of studies, including the present,

it tends to have a very strongly baroclinic structure, and, as pointed out by Szunyogh et al. (1997),

the temperature and velocity perturbations are very far from quasi-geostrophic balance, with the

vorticity being at least an order of magnitude smaller than could be expected from a state of balance.

The quasi-inverse linear sensitivity is in much better geostrophic balance, but (unlike the adjoint

sensitivity) contains both growing and decaying errors, and therefore tends to have larger amplitudes

than the adjoint sensitivity. These properties help to explain the results obtained so far, and in

particular why they were different in the cases of large and small forecast impact. For large impact

the two methods show the same large sensitivity area because the changes in the analysis were fast

growing errors. For small impact, the quasi-inverse linear indicates the area where the forecast

differences originated but which lead to small forecast changes, and the adjoint sensitivity shows other

areas where dropwindsondes would have had larger effects. The results suggest that the two methods

are complementary, and that they could both be used in future experiments for comparison and

decision making.

We have seen that by 72 hours both methods extend the area of sensitivity well beyond the

area of maximum difference in the analysis. For example, in the case of large impact (February 8),

both methods show large sensitivities over Canada and in the central Pacific, further north and west

from the area where the sondes were dropped. These differences between the sensitivities and the
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true analysis differences could be due to several possible causes: a) the choice of a regional mask,

which necessarily distorts the initial balance of the forecast differences; b) the linear assumption does

not hold by 3 days; c) the lack of proper physical parameterizations in the quasi-inverse linear and in

the adjoint models; d) the basic flow solution that we have taken in our experiments can contain

significant errors and affect the sensitivities.

In this section we explore further some of the possible causes and how they affect the

sensitivities. We use the OOOOUTC 8 February case for these tests.

a) Impact of the mask size

We first test the impact of the size of the mask radius. For this purpose, we take a 72-h

forecast window and compare three different experiments: 1) calculate the initial sensitivity from

the global forecast differences; 2) calculate the initial sensitivity from the forecast difference in the

US region, with a mask centered at 45N, 95W and with a radius of 1000km (same case discussed

in section 4); and 3) same as 2), but with a mask radius of 500km. Fig. 13 shows the sensitivities

measured by the vertically averaged squared vorticity for both the quasi-inverse linear and the adjoint

sensitivities. The results are encouraging: The two methods agree quite well in the areas identified

as sensitive from the global initial differences. When the regional masks are applied, both sensitivities

shrink, as expected, but the adjoint shrinks faster, both in area and in magnitude. As we saw before,

the QILM points more clearly to the area where the true analysis differences are located, and shows

good agreement with the area of analysis differences. The reduction in sensitivity area as the mask

is reduced and the consistency among the three areas of sensitivity indicates that the negative effects

of using a regional mask are not large, and that it should be possible to determine the sensitivity area

for a given region using, for example, the local ensemble spread to define the initial uncertainties

(Kalnay et al. 1996).

b) Impact of the basic flow

The linear tangent model and its adjoint are defined with respect to a basic nonlinear flow,

which are assume is known with sufficient accuracy. In real time situations, the best estimate of the
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evolution of the atmosphere at the verification time (i.e., the analysis) is not available 2 or 3 days in

advance for sensitivity calculations. Therefore, we are forced to use a substitute estimate, i.e., a

nonlinear forecast. In these experiments, in order to simulate a real time situation, we have used the

forecast from the best analysis (with the dropwindondes) as a basic flow.

We tested three estimates of the basic flow: 1) the forecast starting from the initial analysis

at 0000 UTC 8 February 1995 using the dropwindsonde data. 2) the forecast starting from the

control initial analysis without the dropwindsonde data; and 3) 6 hourly analyses over the forecast

period 0000 UTC 8 February 1995 to 0000 UTC 11 February 1995, which is our best estimate of the

atmosphere. For QILM, changing the forecast shows little sensitivity with respect to the impact of

the dropwindsondes on the basic forecast (not shown). However, when we use the analysis as the

basic flow, a second large sensitivity area appears over Northern Canada, which was not clearly

present in the other two experiments (figures not shown). These results show that the basic flow has

some effect on the initial sensitivity perturbations, which are to some extent "basic-flow dependent".

With the ADJM, the impact of the basic flow on sensitivity perturbations is stronger. The

temperature adjoint sensitivity (Fig. 14) shows better agreement with the analysis differences when

the analysis is used as basic flow (Fig. 14c), indicating that a more accurate basic flow will improve

the location of the large sensitivity area. However, these experiments suggest that 48-72 h forecasts

may be sufficiently to indicate realistic sensitivity areas.

c) Impact of the initial differences

Lord (1996) compared the relative impact of mass only and wind only dropsonde data and

found that winds forced larger forecast impact. For the case of 0000 UTC 08 February 1995 we test

the ability of the wind data to recover temperature (mass) data by using the vorticity differences

between two forecasts (with and without the dropwindsondes) at the verification time as the initial

condition for the sensitivity calculation, and zeroing out all other components (temperature,

divergence and pressure). This calculation is equivalent to keeping only the first term of the energy

norm in (3) and excluding all the other terms. The results with both of QILM and ADJ (Fig.15)

shown that by using the vorticity differences only, we get almost the same geographic sensitivity as

when we used forecast differences for all components, except that the magnitude is smaller. Even

-15-



though at the initial (verification) time only vorticity differences are available, at the end of the

backward integration the sensitivity features for temperature are also recovered (Fig. 15, compared

with Fig.6).

In the same way, we also test ability of the temperature data to recover wind data by using the

temperature differences between two forecasts (with and without the dropwindsondes) at the

verification time as the initial condition for the sensitivity calculation, and zeroing out all other

components (vorticity, divergence and pressure). The results showed that we recovered much of the

information at initial time for both temperature and vorticity field by QILM (Fig.16). However, the

calculation with ADJM showed a different conclusion: the temperature field is recovered over a small

area and with a small magnitude. The recovered vorticity field is essentially zero.

6. Summary and conclusions

In this study we used analyzes and forecasts from a dropwindsonde experiment performed

over the northeast Pacific in February 1995 (Lord 1996) to perform a forecast sensitivity study, and

to provide guidance toward the development of a methodology for adaptive observation systems.

In an adaptive observing system, the crucial question is how to determine the target area where the

data are most needed. In this study we already knew the location of the additional data, so we

studied two cases, one with a large impact from the dropwindsondes over the US, and the second

with minimal impact, in order to assess whether forecast sensitivity experiments could distinguish

between the two cases.

Two methods of estimating forecast sensitivity from a backward integration of forecast

differences over a region of interest (the U.S. in our case), using either the ADJM or QILM. The

basic conclusions of the study are the following:

Both ADJM and QILM should be a useful tool for adaptive observations in order to

determine the areas where the data are most needed. Using the energy norm, the adjoint

sensitivity is much more baroclinic (tilted) than either the quasi-inverse or the actual analysis

differences. The energy-norm adjoint sensitivity has relatively very small wind or vorticity

differences, and is far from quasi-geostrophic balance. The quasi-inverse sensitivity tends to
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be larger amplitude and more in balance.

The adjoint sensitivity determines areas that will result in maximum impact over the area of

interest. The quasi-inverse sensitivity answers more accurately the question: given a forecast

difference (such as the large spread of ensemble forecast members over the area of interest),

where did the difference come from? As a result the two methods are complementary, and

both should be used together.

* The methodology used was generally successful: Taking forecast differences and applying a

local mask over the region of interest to start the backward integrations worked well, without

negative effects due to spatial truncation. Both methods identified the region in the North

Pacific where the sondes were dropped in the high impact case from the 48-h forecast

differences. They both indicated that for the 72-h forecast it would have been even more

effective to launch the sondes further west over the Pacific Ocean.

o Although by 72-h the assumption of linearity breaks down, the sensitivity results covered a

larger area but otherwise continued to be useful for this forecast length. It was found that the

size of the local region and the basic flow used for the linear and adjoint integrations had

some impact but did not dominate the signal.

* In the case of low impact from the dropwindsondes, the ADJM successfully indicated low

sensitivity in the region of the drops, whereas the QILM was able to pinpoint better where

the actually observed small forecast differences came from. Both methods pointed out other

areas (such as further south from the region of the drops) which in this case would have been

a more useful location for additional observations.

* In the sensitivity calculation, the accuracy of the basic flow has an impact on the results. The

more accurate basic flow tends to lead the more accurate sensitivity information.

* In real time applications, forecasts impacts are not available, and alternative verification time

perturbations must be chosen. Ensemble forecast differences, especially among ensemble

members showing a larger forecast difference would be a good choice.

* Experiments using different initial perturbations such as using only the vorticity information,

indicate that the geographical location from the sensitivity calculations is still good. With the

temperature information only the QILM gives reasonable results.
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Many of the techniques developed during this study were already adopted during the

FASTEX experiment. We will report the final FASTEX evaluation results in the near future.
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Figure Caption

Fig.l1 Time mean 500hpa analysis over 1-10 February 1995. The left-hand box encompasses the area

over which all observations were taken; the right-hand box is the forecast verification area.

Fig.2 Time series of the standard deviation of 500 hPa height errors over the verification area for

control ( solid line, open symbols) and dropwindsonde experiment ( dashed line, closed

symbols). The abscissa refers to the forecast initial time; observation times are marked

with symbols. The bottom, middle and top pairs of lines are for 24, 48 and 72-h forecasts

respectively.

Fig.3 48-h (a) and 72-h(b) forecast differences at sigma level 7 (about 850hpa) between the control

and experimental forecasts at 0000 UTC 8 February 1995 ( unit: K. Note that there is no

zero line in the contour). The area centered at ( 45N, 95 N) with 1000 km radius indicates

the geographical extent of the mask.

Fig.4. Same as Fig.3 except for forecast differences after the mask filter.

Fig.5. Vertical cross section at 50N of the sensitivity perturbation for temperature calculated from

48-h masked forecast differences (e.g. Fig.3) by the adjoint method(a), and the quasi-inverse

linear method (b), and analysis differences at OOOOUTC 8 February 1995 (c).Note the

different contour intervals which are indicated in brackets above each panel.

Fig. 5 (d)-(f) are same as fig.5 (a)-(c) except for vorticity field.

Fig.6. The vertically average sensitivity field for squared temperature over sigma levels 7-18 at

0000 UTC 8 February 1995, calculated from 48-h forecast differences by (a). the adjoint

method (unit: 1.e3 K*K); (b). the quasi-inverse linear method (unit: 10 K*K) and (c). analysis

differences (unit: 1 K*K).
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Fig.7(a)-(b). Same as Fig.6(a)-(b), except the sensitivity field calculated from 72-h

forecast differences.

Fig.8. Time series of root mean square difference in mean sea level pressure (a) and 500 hpa

vector wind (b) between the control and experimental (with dropwindsonde) analysis (solid)

and six hour forecast (dashed) averaged over the data coverage area (Fig.1).

Fig.9. Same as Fig.6. except for 0000 UTC 3 February 1995 case.

Fig. 10. Same as Fig.7. except for 0000 UTC 3 February 1995 case.

Fig.11. The average of the squared forecast temperature differences at 48-h over sigma level

7-18 from 0000 UTC 3 February 1995 (unit: K*K).

Fig.12. Same as Fig.6, except the sensitivity field calculated from 48-h forecast differences with

a mask filter centered at ( 105 W, 65 N) with 500 km radius for case of 00 UTC 3 February

1995.

Fig.13. The vertically average sensitivity field for squared vorticity over sigma 7-18 at 00 UTC 08

February 1995. Calculated from 72-h forecast differences over the (a). global region;

(b). U.S. region, the mask is centered (95W, 45N) with a radius of 1000 km; and (c). U.S.

region, the mask is centered (95W, 45N) with a radius of 500 km. Calculated by QILM

(Unit: 1.ell/s/s).

(d)-(f) are the same as (a)-(c), except calculated by AI)JM (Unit: 1.e13/s/s).

Fig.14. The vertically average sensitivity fields for squared temperature (unit: 1.e3 K*K) over sigma

7-18 at 00 UTC 08 February 1995, calculated by adjoint method from 48-h forecast

differences with a mask filter centered at (95W, 45N) with 1000 km radius. The different

basic flow:
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a. the forecasts which started from the initial analysis with dropwindsonde data at 00 UTC

8 February 1995;

b. the forecast started from the control initial analysis without the dropwindsonde data; and

c. every 6-hour analysis over the forecast period 0000 UTC 08 February 1995 to 0000

UTC 10 February 1995 were used for the calculations.

Fig.15. Same as Fig.6 a and b, except calculated by 48-h forecast differences of the vorticity

component only.

Fig. 16. The vertically average sensitivity field for: (a). squared temperature (unit: 1.el K*K);

(b). squared vorticity (unit: 1.ell/s/s) over sigma 7-18 at 0000 UTC 08 February 1995.

Calculated from 48-h forecast differences of the temperature only with a mask filter

centered at (95W,45N) with 1000 km radius.

Table Caption

Table.1: Initial time and number of observation which used for the evaluation
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Table.l: Initial time and number of observation which used for the evaluation

-26-

Date (month/day UTC) Number of Wind Soundings Number of Mass Soundings

2/1 1200 7 8

2/2 1200 8 8

2/3 0000 2 2

2/4 1200 4 5

2/7 1200 6 6

2/8 0000 5 6

2/9 0000 4 8

2/10 0000 5 6
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PMSL RMS Difference (RECON-CNTL) 130-155 W, 29-51 N

Analysis (solid line) Guess (dashed line)
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500 hPa Vector Wind RMS Difference (RECON-CNTL) 130-155 W, 29-51 N

Analysis (solid line) Guess (dashed line)
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