
Paul van Delst

Betty Petersen Memorial Library
Technical Seminar Series

Subversion
2.

 
Branching, Merging, and Tagging.
Common Use Cases and Practices.



Subversion: Branching, Merging, and Tagging December, 2009 2

Introduction
•

 

Branching, merging, and tagging in subversion can make parallel 
development of software by multiple people much easier.
–

 

Branching allows you to isolate changes.
–

 

Merging allows you control over what changes are accepted.
–

 

Tagging allows you to easily identify particular revisions of your code base. No 
more guessing!

•

 

Goal of this seminar is to emphasise

 

two principles:
–

 

Protect The Trunk
–

 

Minimise

 

Conflicts

•

 

What is your experience with branching, merging, or tagging in subversion 
(or other version control systems)?

•

 

What do you want to know about branching, merging, and tagging?



Subversion: Branching, Merging, and Tagging December, 2009 3

Resources for this Seminar
•

 

Version Control with Subversion (http://svnbook.red-bean.com)
•

 

Pragmatic Version Control Using Subversion (http://pragprog.com/titles)
•

 

Software Configuration Management Patterns (http://www.berczuk.com)

The definitive book on subversion. The website is updated frequently 
to reflect changes in subversion itself. We will be discussing topics 
from the book for Subversion v1.4 -

 

the latest version available to us 
in EMC. (v1.5 is the latest stable release. V1.6 is being worked

 

on.)

http://svnbook.red-bean.com/
http://pragprog.com/titles
http://www.berczuk.com/


Subversion: Branching, Merging, and Tagging December, 2009 4

Resources for this Seminar
•

 

Version Control with Subversion (http://svnbook.red-bean.com)
•

 

Pragmatic Version Control Using Subversion (http://pragprog.com/titles)
•

 

Software Configuration Management Patterns (http://www.berczuk.com)

A good introduction to the typical day-to-day usage of subversion. 
The book only deals with subversion v1.3, but the common usage 
recommendations still apply.

http://svnbook.red-bean.com/
http://pragprog.com/titles
http://www.berczuk.com/


Subversion: Branching, Merging, and Tagging December, 2009 5

Resources for this Seminar
•

 

Version Control with Subversion (http://svnbook.red-bean.com)
•

 

Pragmatic Version Control Using Subversion (http://pragprog.com/titles)
•

 

Software Configuration Management Patterns (http://www.berczuk.com)

Good for the pictorial representations of patterns of usage of version 
control while discussing the wider topic of SCM in general. Lots

 

of 
“experience stories”

 

from the author. I found I needed 
background/additional reading to understand the topic in the context 
of what we do here (i.e. scientists, not programmers, writing code)

http://svnbook.red-bean.com/
http://pragprog.com/titles
http://www.berczuk.com/


Subversion: Branching, Merging, and Tagging December, 2009 6

Outline
•

 

Branching
–

 

When should I create a branch? What do I call it? How do I do it?
–

 

What not

 

to do.

•

 

Merging
–

 

Trunk to branch merges. 
–

 

Branch to trunk merges.
–

 

What not

 

to do, common problems (well, common to me :o)

•

 

Tagging
–

 

When should I create tags?

•

 

Questions.



Subversion: Branching, Merging, and Tagging December, 2009 7

Branch

Name

Pictorial “definitions”

Trunk

Branch to
trunk merge

Branch tag

Trunk tagCommitted revisions

Trunk to
branch merge

Delete
branch



Subversion: Branching, Merging, and Tagging December, 2009 8

Branching



Subversion: Branching, Merging, and Tagging December, 2009 9

When to create a branch?
•

 

The trunk is the mainline of development -

 

it should always pass a 
standard set of tests and be “nearly ready”

 

for release or usage. As such, 
we always should try to Protect The Trunk.

•

 

Branching is a way to isolate yourself, or others, from change.

•

 

There are two typical scenarios to create a branch:

1.

 

Feature Branch: You want to introduce a new feature into the mainline
a.

 

It’s not unreasonable to assume you will break the code (syntax errors, new 
bugs, etc) in the course of implementing and testing the new feature.

b.

 

You still want to be able to commit unfinished code.

2.

 

Release Branch: You want to release the code
a.

 

Development is “frozen”

 

for the release.
b.

 

Release-specific bug-fixes may be needed.



Subversion: Branching, Merging, and Tagging December, 2009 10

What to name the branch?
•

 

How you name branches is up to you. Just ensure everyone involved in 
development knows what the convention is.

•

 

Two examples of branch naming is EMC:

1.

 

CRTM
–

 

Feature, or experimental, branches are named by function, e.g. EXP-Visible

 
is the branch in which a visible capability is being added to the CRTM.

–

 

Release branches are named by their release version number, e.g.

 

RB-1.2.

2.

 

GSI
–

 

Feature branches are named after the developer implementing the feature in 
that branch, e.g. mpondeca

 

or dparrish2

•

 

The different naming conventions reflect the different development 
strategies each team has adopted.



Subversion: Branching, Merging, and Tagging December, 2009 11

How to create a branch?
•

 

To create a branch from the trunk, you use the svn

 

copy

 

command,

where the <FROM>

 

is the source URL, and the <TO>

 

is the destination 
URL, e.g.

•

 

Resist the temptation to create branches from working copies.
–

 

Working copies can contain mixed revisions

•

 

A branch

 

is simply a copy of a particular revision of the trunk filesystem.

•

 

As I have mentioned before, there is nothing special, or branch-y, about a 
branch in subversion. Branches are branches only

 

because, by common 
convention, we say they are.

•

 

Branch the entire trunk. You may not need it now, but…

svn

 

copy <FROM> <TO>

svn

 

copy https://svnemc.ncep.noaa.gov/projects/crtm/trunk \
https://svnemc.ncep.noaa.gov/projects/crtm/branches/EXP-MyBranch



Subversion: Branching, Merging, and Tagging December, 2009 12

r1001

EXP-TestX

Branch creation

Trunk r1000

r1010

r1015 r1050

svn

 

copy https://.../trunk \
https://.../branches/EXP-TestX

r1021 r1063



Subversion: Branching, Merging, and Tagging December, 2009 13

What not to do with branching
•

 

Preface: These are general guidelines and shouldn’t be taken as literally 
as written. Context is key

 

-

 

your development team should determine any 
strict policy-driven methodologies.

•

 

Keep your branching as shallow as possible.
–

 

Branch from the trunk.
–

 

Try not to create branches from existing branches.

•

 

Keep your branch lifetimes as short as possible.
–

 

Remember, the trunk is the mainline of development, not the branches.

•

 

Avoid the “crawl-in-a-hole”

 

strategy.
–

 

For situations where branches do exist for a long time (for a suitable definition 
of “long”), merge the trunk into the branch as frequently as possible.

•

 

E.g. CRTM project merges trunkbranches every Thursday evening. Any conflicts 
are dealt with on Friday.

–

 

Frequent updates on a branch will minimise

 

the number of conflicts that occur 
at any particular merge, be it trunkbranch, or branchtrunk.



Subversion: Branching, Merging, and Tagging December, 2009 14

Merging



Subversion: Branching, Merging, and Tagging December, 2009 15

svn

 

merge URL1[@N] URL2[@M] [WCPATH]

Merging cases
•

 

We will discuss three general cases
–

 

Trunkbranch

 

merges.
–

 

Short-lived branch  trunk merges.
–

 

Long-lived branch  trunk merges.

•

 

Two different forms of the merge

 

subcommand will be used,

and
svn

 

merge -r N:M URL [WCPATH]

Specifies the range of 
revisions to merge, e.g.
–r 1000:1050

or
–r 1000:HEAD

The path to the working 
copy in which the changes 
will be merged. Defaults to 
“.”

 

(current directory).

The repository URL 
from which the changes 
will be retrieved.



Subversion: Branching, Merging, and Tagging December, 2009 16

Merging cases
•

 

We will discuss three general cases
–

 

Trunkbranch

 

merges.
–

 

Short-lived branch  trunk merges.
–

 

Long-lived branch  trunk merges.

•

 

Two different forms of the merge

 

subcommand will be used,

and
svn

 

merge -r N:M URL [WCPATH]

svn

 

merge URL1[@N] URL2[@M] [WCPATH]

The two repository URLs (at particular revisions) to 
compare for the merge, e.g.
https://.../trunk@1063

and
https://.../branches/EXP-TestX@1063

The path to the working 
copy in which the changes 
will be merged. Defaults to 
“.”

 

(current directory).



Subversion: Branching, Merging, and Tagging December, 2009 17

Trunk to branch merges: Why?
•

 

As previously stated, frequent updates on branches minimise

 

the 
likelihood of many conflicts when the branch is merged back into

 

the 
trunk.

•

 

It also makes available to the branch any updates or bug-fixes that have 
been implemented in the trunk (or merged into the trunk from a different 
branch.)

•

 

Each development team needs to determine the “best”

 

frequency of 
regular trunkbranch

 

updates.
–

 

Once a day? Once a week?
–

 

E.g. CRTM does weekly branch updates from trunk (using a script).

•

 

For the more complex systems being developed here, frequent branch 
updates from trunk might invalidate experiments so, as always, 
communication between developers and code managers is key.
–

 

E.g. maybe a particular branch developer can “opt-out”

 

of regular updates from 
trunk until their tests are completed.

•

 

Realise

 

that the longer the period between merges, the greater the 
likelihood of conflicts occurring when they are finally done.



Subversion: Branching, Merging, and Tagging December, 2009 18

Trunk to branch merges: Setup
1.

 

Go to the root of your branch working copy.
2.

 

Execute an svn

 

status

 

command,

to determine if:
a.

 

There are later versions of files in the repository (*

 

in column 7 of output)
b.

 

You have any local modifications (M

 

in column 1 of output)

3.

 

If (2a) is the case, you must

 

issue an svn

 

update

 

command,

to bring your working copy up-to-date.

4.

 

If (2b) is the case, you should

 

commit your local modifications prior to 
performing the merge,

5.

 

At this point you have a “clean working copy”

svn

 

status --show-updates

svn

 

update

svn

 

commit



Subversion: Branching, Merging, and Tagging December, 2009 19

1.

 

Determine the trunk revision from which the branch was created; let’s say 
it was 1000. Add one to give 1001.

2.

 

Determine the current trunk revision in the repository; let’s say it is 1050. 
Subversion also recognises

 

the keyword HEAD

 

for this case.
3.

 

Issue the merge

 

subcommand with the --dry-run

 

switch,

This will list all the changes that will

 

occur, without actually doing anything 
to your branch working copy so you can see if there are any conflicts.

4.

 

If there are no conflicts, or their number is reasonable (more on that later), 
reissue the merge

 

subcommand without the --dry-run

 

switch to 
actually perform the merge in your branch working copy.

5.

 

Deal with any files in conflict and resolve them,

6.

 

Commit the merge changes with a useful log message,

Trunk to branch merges: First Time

svn

 

merge --dry-run -r 1001:1050 https://.../trunk

 

.

svn

 

resolved <FILE>

svn

 

commit –m “EXP-TestX

 

branch. Merged trunk r1001:1050 into branch”



Subversion: Branching, Merging, and Tagging December, 2009 20

r1001

EXP-TestX

Trunk to branch merges: First Time

Trunk r1000

r1010 r1021

r1015 r1050

r1054

svn

 

merge –r 1001:1050 https://.../trunk .

svn

 

commit

 

–m “EXP-TestX

 

branch. Merged trunk r1001:1050 into branch”



Subversion: Branching, Merging, and Tagging December, 2009 21

1.

 

Determine the end revision of the last trunk merge into the branch by 
looking at the log message for the branch,

In our example that was 1050.
2.

 

Follow the same procedure as for the first time.

•

 

Why the separate slide? To emphasise

 

the importance of specifying the 
merged revisions in the commit log message.

•

 

Without manually tracking the merged revisions in the commit log

 
message, you have no way

 

to determine which revisions from the trunk 
have been merged! (Subversion v1.5 does it for you, but…) 

•

 

If you remerge previously merged revisions, you will typically get many, 
many conflicts. If this happens, it’s a clue that the merge revision range is 
probably incorrect. 

Trunk to branch merges: Next time

svn

 

log | more



Subversion: Branching, Merging, and Tagging December, 2009 22

Using trac
 

SCM tool to inspect commit logs



Subversion: Branching, Merging, and Tagging December, 2009 23

Branch to trunk merges
•

 

There are two basic scenarios to deal with in merges branches back to 
the trunk.

1.

 

The branch is short-lived and has had no updates from the trunk.

2.

 

The branch is long-lived and has had several updates from the trunk.

•

 

As with the trunkbranch

 

merges, you’ll want to merge into a clean 
working copy of the trunk.



Subversion: Branching, Merging, and Tagging December, 2009 24

r1001

EXP-TestX

Short-lived branch to trunk merge

Trunk r1000

r1010 r1021

r1015 r1050

r1063

r1067

r1070

svn

 

merge –r 1001:1063 https://.../branches/EXP-TestX

 

.

svn

 

commit

 

–m “Merged EXP-TestX

 

branch r1001:1063 into trunk”

svn

 

delete https://.../branches/EXP-TestX



Subversion: Branching, Merging, and Tagging December, 2009 25

r1001

EXP-TestX

Long-lived branch to trunk merge (1)

Trunk
r1000 r1015 r1050

r1063

r1016 r1051

•

 

Branch required multiple trunkbranch

 

merges, committed at revisions 
1016

 

and 1051.

•

 

We now want to merge the branch back into the trunk so trunk developers 
have access to the branch updates. Note that branch developer may still 
want to work on further branch changes.

•

 

What merge range in branch? How to avoid remerging the trunk updates?

r1071



Subversion: Branching, Merging, and Tagging December, 2009 26

•

 

Perform a “final”

 

trunkbranch

 

merge and commit.

•

 

If we now difference the HEAD

 

(or revision 1072) of the branch and trunk, 
the result will be only

 

those changes made in the branch.
•

 

Now we switch to a clean trunk working copy and use the second form of 
the merge

 

subcommand

r1001

EXP-TestX

Long-lived branch to trunk merge (2)

Trunk
r1000 r1015 r1050

r1063

r1016 r1051

r1071

r1072

svn

 

merge –r 1051:1071 https://.../trunk .
svn

 

commit –m “EXP-TestX

 

branch. Merged trunk r1051:1071 into branch”

svn

 

merge https://.../trunk@1072 https://.../branches/EXP-TestX@1072 .

r1073

svn

 

commit –m “Merge of trunk@1072 and EXP-TestX@1072 to trunk”



Subversion: Branching, Merging, and Tagging December, 2009 27

Using trac
 

SCM tool to inspect commit logs



Subversion: Branching, Merging, and Tagging December, 2009 28

Using trac
 

SCM tool to inspect merge result



Subversion: Branching, Merging, and Tagging December, 2009 29

•

 

Remerge previously merged  changes.
–

 

This has been mentioned several times. 
–

 

Due to the version of Subversion we have to use (v1.4), we need to be  
responsible for keeping track of merges between the trunk and branches.

–

 

Subversion v1.5 solves this problem by basically attaching the merge 
information as a property of the file.

•

 

Merge into a dirty copy.
–

 

Cannot separate local modifications from merge operation.

•

 

Incorrectly resolving conflicts.
–

 

This can result in branch, or trunk, changes disappearing from a

 

merge 
operation. “What!?”

 

I hear you say?
–

 

But, easy to rectify if the merge is done into a clean working copy.

•

 

Merge across branches.
–

 

Things can get messy really quick.

What not to do with merging



Subversion: Branching, Merging, and Tagging December, 2009 30

Merge into a dirty copy

These files were all local 
modifications. I can no longer 
separate the commit of the 
merged files from the commit 
of the local mods.



Subversion: Branching, Merging, and Tagging December, 2009 31

Incorrectly resolving conflicts (1)
•

 

About a month ago, I did a “routine”

 

trunkEXP-Visible

 

branch merge in the 
CRTM.

•

 

There was a conflict in a file that I resolved by simply replacing the working copy 
with the latest revision.
–

 

Unfortunately, the latest revision was a trunk copy so all the changes made in that file in 
the branch “disappeared”

 

in the branch HEAD

 

revision.
–

 

Needless to say the branch developer, Quanhua

 

Liu, was a bit confused the next day 
when he sat down to continue working on the branch.

•

 

How to fix it?

1.

 

Undo the merge operation

 

for the file in the branch working copy (and commit!)

This was doable because the initial merge was done into a clean working copy.
2.

 

Remerge

 

the trunk into the branch just for this file to bring it back into conflict

3.

 

Correctly resolve the conflict

 

and commit (with a suitably humble commit log 
message)

svn

 

merge –r 5622:5621 CRTM_RTSolution.f90

svn

 

merge –r 5518:5621 \
https://.../trunk/src/RTSolution/CRTM_RTSolution.f90 .



Subversion: Branching, Merging, and Tagging December, 2009 32

Incorrectly resolving conflicts (2)



Subversion: Branching, Merging, and Tagging December, 2009 33

Incorrectly resolving conflicts (3)



Subversion: Branching, Merging, and Tagging December, 2009 34

Incorrectly resolving conflicts (4)



Subversion: Branching, Merging, and Tagging December, 2009 35

•

 

This may be a bit of a red herring as I encountered this problem

 

merging back 
when I had no idea what I was doing.

•

 

I had done the following:

•

 

I now wanted to merge all the trunk changes back into the EXP-SOI

 

branch.
•

 

How to do it without remerging that section of the RB-1.1

 

branch that made it into 
the EXP-SOI

 

branch in r1866

 

back into the branch after the RB-1.1trunk 
merge?

•

 

At this time I was unaware of the second form of the merge

 

subcommand we’ve 
looked at, so my solution may be overly contrived due to my ignorance….

Merging across branches (1)



Subversion: Branching, Merging, and Tagging December, 2009 36

•

 

My solution…

•

 

The moral of the story: If you can help it, don’t do cross-branch merges. Always try 
to merge to/from the trunk.

Merging across branches (2)



Subversion: Branching, Merging, and Tagging December, 2009 37

Tagging



Subversion: Branching, Merging, and Tagging December, 2009 38

When to create a tag?
•

 

A tag is simply a snapshot of a particular revision of the repository.

•

 

It’s basically a way to give a human-friendly name to a particular revision 
rather than having to remember a revision number.

•

 

You typically create tags:
–

 

At the beginning and end of short-lived development branches for easy 
merging.

–

 

For releases; alpha, beta, and final.
–

 

Before, and after, complicated merge procedures (just in case)
–

 

If you have a particular combination of revisions in your working copy, and 
want to create a tag of that (I don’t do this, but it can be useful to folks)

•

 

Anytime you want to refer to a particular trunk or branch revision in the 
repository, for whatever reason, create a tag (with a meaningful

 

name, of 
course).



Subversion: Branching, Merging, and Tagging December, 2009 39

How to create a tag?
•

 

A tag is created in exactly the same way as a branch, using the copy

 
subcommand, but you copy it to the tags repository directory.

•

 

Let’s say I tag the beginning of my EXP-TestX

 

branch, before I’ve made 
any changes in the branch,

svn

 

copy https://.../branches/EXP-TestX

 

\
https://.../tags/PRE-TestX

r1001

EXP-TestX

Trunk r1000

r1010

r1015 r1050

r1021 r1063

PRE-TestX



Subversion: Branching, Merging, and Tagging December, 2009 40

So what?
•

 

O.k., I’ve created a tag of the start of my branch. So what?

•

 

Well, let’s also tag the end of my EXP-TestX

 

branch, after I’ve made all 
my changes and want to merge to trunk,

svn

 

copy https://.../branches/EXP-TestX

 

\
https://.../tags/POST-TestX

r1001

EXP-TestX

Trunk r1000

r1010

r1015 r1050

r1021 r1063

PRE-TestX POST-TestX



Subversion: Branching, Merging, and Tagging December, 2009 41

Use tags for merging
•

 

Now let’s merge the branch changes to the trunk,

•

 

So, you can use tags to avoid mucking about with revision numbers.
•

 

This works best with very short-lived branches (e.g. bug-fixes). In these 
cases you might use a bug tracking number in the tag name.

svn

 

merge https://.../tags/PRE-TestX

 

\
https://.../tags/POST-TestX

 

.
svn

 

commit –m “Merged PRE-TestX

 

to POST-TestX

 

tags into trunk”

r1001

EXP-TestX

Trunk r1000

r1010

r1015 r1050

r1021 r1063

PRE-TestX POST-TestX

r1067



Subversion: Branching, Merging, and Tagging December, 2009 42

Use tags for releases
•

 

You can tag various stages of your release branch as you iron out 
problems.

•

 

Let’s regularly tag a RB-2.0

 

release branch:

RB-2.0

Trunk

alpha1.REL-2.0 alpha2.REL-2.0 beta1.REL-2.0



Subversion: Branching, Merging, and Tagging December, 2009 43

Use tags to bracket merges
•

 

This usage is a defense mechanism to protect the trunk.

•

 

If anything bad/strange/whatever happens with a merge to trunk, you can 
always easily restore from a tag.

r1001

EXP-TestX

Trunk r1000

r1010

r1015 r1050

r1021 r1063

r1067

PRE-merge POST-merge



Subversion: Branching, Merging, and Tagging December, 2009 44

Summary



Subversion: Branching, Merging, and Tagging December, 2009 45

Summary
•

 

Protect the trunk
•

 

Commit often

•

 

Branches
–

 

Keep them shallow
–

 

Create them from repository, not working copies
•

 

Merging
–

 

Merge as regularly as your development strategy can handle
–

 

Track your merge revision numbers (SCM tools like trac

 

are invaluable)
–

 

Merge into clean working copies only
–

 

Be careful resolving conflicted files (but don’t obsess)
–

 

Avoid cross-branch merging if you can help it.
•

 

Tagging
–

 

Tag with abandon!

•

 

Subversion copies are cheap operations so don’t hesitate to branch or 
tag.



Subversion: Branching, Merging, and Tagging December, 2009 46

Future Library Technical Seminars
•

 

If you want to request a topic for a Technical Seminar, or want to 
volunteer to give one, contact Jan Thomas. See the library “Ask the 
Librarian”

 

webpage:



Subversion: Branching, Merging, and Tagging December, 2009 47

Questions?


	Subversion
	Introduction
	Resources for this Seminar
	Resources for this Seminar
	Resources for this Seminar
	Outline
	Pictorial “definitions”
	Branching
	When to create a branch?
	What to name the branch?
	How to create a branch?
	Branch creation
	What not to do with branching
	Merging
	Merging cases
	Merging cases
	Trunk to branch merges: Why?
	Trunk to branch merges: Setup
	Trunk to branch merges: First Time
	Trunk to branch merges: First Time
	Trunk to branch merges: Next time
	Using trac SCM tool to inspect commit logs
	Branch to trunk merges
	Short-lived branch to trunk merge
	Long-lived branch to trunk merge (1)
	Long-lived branch to trunk merge (2)
	Using trac SCM tool to inspect commit logs
	Using trac SCM tool to inspect merge result
	What not to do with merging
	Merge into a dirty copy
	Incorrectly resolving conflicts (1)
	Incorrectly resolving conflicts (2)
	Incorrectly resolving conflicts (3)
	Incorrectly resolving conflicts (4)
	Merging across branches (1)
	Merging across branches (2)
	Tagging
	When to create a tag?
	How to create a tag?
	So what?
	Use tags for merging
	Use tags for releases
	Use tags to bracket merges
	Summary
	Summary
	Future Library Technical Seminars
	Questions?

