
Paul van Delst, Liam Gumley Page 1 of 2 3/24/09

Introduction to Subversion
Subversion is an open source revision control system that allows one or
more users to easily share and maintain collections of files. Most of the
material here is distilled from http://svnbook.red-bean.com.

Subversion availability
To determine if you have subversion installed on your system, type
$ svn --version

How the repository is set up
Determine your repository URL. For example, the EMC repository is
located at https://svn.ncep.noaa.gov/emc with a mirror on the vapor R&D
machine at file:///gpfs/v/svn/emc. Various projects are maintained in
the same repository. Each project contains three directories: trunk, for
mainline development; branches, for branch development off the
mainline; and tags, for labeling “frozen” snapshots of your system.

Revision numbers
When a Subversion repository is created it starts off at revision zero and
each successive commit increments the revision number by one. Note that,
unlike CVS, the revision number is repository-wide so any commit
increments the revision number. Typically you don’t have to worry about
the value of the revision number, but there are situations – in particular,
merging – where it is helpful.

Importing files into subversion
To import a new project into the repository, first move to the location
containing the directory hierarchy, let’s call it projX, you wish to import,
e.g.
$ cd $HOME/projects

Then, use the svn import command,
$ svn import –m “New src” projX https://svn.ncep.noaa.gov/emc/X/trunk

This imports the directory hierarchy projX into emc/X/trunk in the
repository. The –m “New src” option sets the log message for this import;
without it the default editor (usually emacs) is invoked to allow you to
enter a log message.

Checking out files
The above import does not place the local projX hierarchy under version
control. To get a versioned hierarchy you need to obtain a working copy.
First, move to a location where you want to create your workspace,
$ cd $HOME/workspace

Then use the svn checkout command,
$ svn checkout https://svn.ncep.noaa.gov/emc/X/trunk projX

You will notice that a new directory named projX was created. Additional
projects can also be checked into the same workspace area,
$ svn checkout https://svn.ncep.noaa.gov/emc/crtm/trunk CRTM
$ svn checkout https://svn.ncep.noaa.gov/emc/gsi/trunk GSI
$ ls
CRTM GSI projX

If you enter any versioned directory, you may notice there is a hidden
directory named .svn present. This is where Subversion stores internal
information, and you should not modify any of its contents. Once you
have successfully checked out your project into your workspace, you
should consider deleting the original sources so you aren’t tempted to edit
them directly and bypass Subversion.

Editing files
Once Subversion has created a working copy of your project(s), you are
free to edit, compile, debug, and test as usual – they’re the same as when
they were unversioned.

Merging your changes back into the repository
Since each user can check out a working copy of a project, the changes you
make are only visible to yourself. When you are happy with the changes,
you must commit them into the repository to make them available to other
users and developers. But what if another user has changed the same
file(s)? Subversion handles this by requiring you to update your working
copy to the current repository version before you can commit your own
changes. This is done using the svn update command,
$ svn update hello.f90

This will merge any changes (assuming there were no conflicts) in the
repository into your working copy. You then compile and test the code
again to make sure it still works. If Subversion finds a conflict, it will notify
you where the conflict exists and it is up to you (in coordination with other
users) to resolve it.
Now that your working copy is up to date, you are ready to commit your
changes to the repository using the svn commit command,
$ svn commit hello.f90

At this point, Subversion will start an editor to allow you to enter a log
message that describes the change. A good log message briefly describes
not just what the change was, but why the change was made. It is
recommended that users follow GNU Change Log format when typing the
log message. When you exit the editor, Subversion will commit your
changes to the repository, where they will become visible to all users.

Paul van Delst, Liam Gumley Page 2 of 2 3/24/09

Checking the status of files
When you have a working copy checked out, you will occasionally want to
know which files are up to date, and which have been locally modified.
This is done using the svn status command,
$ svn status

Note that this form of the command only indicates locally modified items;
that is, what you have changed in your working copy since your last
update. If want to indicate what items in your working copy are out-of-
date, use the -u (or –-show-updates) switch,
$ svn status –u

If there is no output, then everything is up-to-date.

To see the commit log messages for a particular item, use the svn log
command,
$ svn log hello.f90

To see the differences (if any) between the working copy of a file and the
version of the file since your last update (the “base” revision), use the svn
diff command,
$ svn diff hello.f90

Adding new files
When you create a new file, or include an already existing one, in your
working copy, it remains local until you commit it to the repository. You
must first schedule the file for addition using the svn add command, and
then commit it,
$ svn add newfile.f90
A newfile.f90
$ svn commit –m “Initial commit” newfile.f90

Deleting files
Removing a file from your working copy does not remove it from the
Subversion repository. Similarly to the add subcommand, you must first
schedule the file for deletion using the svn delete command – which
also deletes it from your working copy – and then commit it,
$ svn delete oldfile.f90
D oldfile.f90
$ svn commit –m “Removed file” oldfile.f90
Deleting oldfile.f90
Transmitting file data
Committed revision 5.

Subsequent updates and checkouts will no longer include deleted files.
However, specifying a revision number with the update subcommand can
restore older versions of the file,
$ svn update –r4 oldfile.f90
A oldfile.f90

Updated to revision 4.

Two important things to remember:
1) always use Subversion (not operating system) commands to delete

files. This will prevent you from unwittingly deleting a locally
modified file.

2) you can always retrieve a deleted file from the repository by specifying
the appropriate revision number to an update.

Renaming files
Subversion provides a shortcut compared to the usual delete-then-add
procedure: the svn move command followed by, as always, a commit,
$ svn move thisfile.f90 thatfile.f90
A thatfile.f90
D thisfile.f90
$ svn commit –m “Renamed this to that file” thisfile.f90 thatfile.f90

Copying files
This section is included only to reinforce the point to not use operating
system commands to operate on files. Use the svn copy command,
$ svn copy thatfile.f90 otherfile.f90
A otherfile.f90
$ svn status
A + otherfile.f90
$ svn commit –m “Copied other from that file” otherfile.f90

So, why use the copy subcommand; and what does the “+” mean in the
status subcommand output? Using the Subversion command to copy a
file preserves the history of the file, and the “+” in column four of the status
output indicates that that history is scheduled for commit. If you did the
following,
$ cp thatfile.f90 otherfile.f90
$ svn add otherfile.f90
A otherfile.f90
$ svn status
A otherfile.f90

then none of the previous history of otherfile.f90 is preserved – the
file is a brand new one in the eyes of Subversion.

Undoing changes
If you haven’t committed, then the svn revert command will undo all
local edits and scheduling operations (e.g. files and directories you have
scheduled for addition or deletion),
$ svn status changedfile.f90 addedfile.f90
A addedfile.f90
M changedfile.f90
$ svn revert changedfile.f90 addedfile.f90
Reverted changedfile.f90
Reverted addedfile.f90

