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This note is a description of the energy equations which are
appropriate to the o-system. Also included here is a discussion of energy
conservation as it is related to the vertical differencing method employed
in the operational model.

In sigma coordinates, we have the following set
equations:
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Here

n = (v - uy) + f

H = diabatic heating rate per unit mass,

and F(x,y) = frictional components.

Kinetic Energy Equation

Multiply (1) by (up.), (2) by (vpa), add result and rearrange. One
can obtain
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whee w - t Rere we have now included the map factor? m, Performing
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K is the kinetic energy per unit area. C(P,K) represents the conversion of

potential plus internal energy (hereafter referred to as total potential
energy) into kinetic energy. D(K) is the kinetic energy dissipation. B(K)

are the kinetic energy equation vertical and lateral boundary terms. It is

desirable, of course, to formulate boundary conditions such that this term

vanishes.

Total Potential Energy Equation

Multiply equation (4) by (cvrpa). One obtains
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Now nultiply equation (10) by - and add the following to both sides of the

equation: v
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We obtain
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Finally upon integrating as before,
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at C (-P K) + i(^}4 (P)

Here

2 = ii~,~.c- S ~~+C?)-tr] 'f, of
P SAS Ar Ck Aa

BCP2~~ = f UGV i2y %#V- ( GAUL- + Ox + 05 To

(11)

(12)

(12a)

(12b)

(12cc

,, · '%



P is the total potential energy per unit area.

G(P) represents the rate of generation of total potential energy
due to diabatic effects.

B(P) represents the lateral and vertical boundary terms. Again it
is desirable to formulate the boundary conditions so that these
terms vanish.

Vertical Differencing in the PE Model and Energy Conservation

We will now consider the vertical differencing as used in the
operational baroclinic PE model in light of the kinetic energy equation (8)
and the total potential energy equation (12). It is desirable to use
differencing schemes which do not introduce spurious energy sources or sinks.
Thus the finite difference forms of terms like

A i~t :o( X1' (P % dz
which exist in equation (8), and terms like

which occur in equation (12), should vanish. The differential forms vanish
since a = 0 at top and bottom, and p = 0 at the top, and Ce = 0 at the

I ~~~~~~~~~~~~~tbottom. Using Shuman's notation for the vertical differenclng, we have
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A. Let us first look at the kinetic energy equation. Multiply (20)

by (ups), (21) by (vp ) and add.
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Consider first the pressure gradient terms.Lk- ?,r w; - - - TC .
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Let us introduce the following differencing method for a layer:
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Thus the pressure gradient terms of equation (25) may be written

Now equation (25) may be written
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Our interest lies in the last four terms which represent the verticalboundary term - [2t+ )
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Let us evaluate the following:
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In the operational model it is assumed that
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But (A) = 1 and (A), = 1/3 * Therefore
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This clearly does not vanish in general. Note that it would vanish if the
model had been designed so that (Ap); = (Ap)r.

A spurious kinetic energy source exists when r. > 0
a spurious kinetic energy sink exists when 4i 4. ,

and

Had we evaluated (us) and (v ) at the top of the boundary layer in order
that VB = 0, we would have obtained
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A numerical test was made in which the vertical differencing scheme which
allows for VB = 0 was incorporated. The model, however, behaved less stably -
i.e, a tendency for stratospheric exhaustion to occur early. A possible
explanation for this failure is that although this new differencing scheme
conserves kinetic energy, it does not conserve momentum. Perhaps a better
test of the above analysis would be to evaluate an experiment in which
(Aps = (Ap)r.. Thus far, this has not been done.

B. Let us now focus our attention on the vertical differencing
used in the thermodynamic energy equation (23). Multiply this equation by
cf .e and.make use of (24) and (26). We obtain the internal energy
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equation
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Comparing this with (10), we see that the last three terms in (31) must
represent C ]-. If we assume that E varies linearly with o, utilize
(29a) and apply to the operational model, we find that the vertical
differencing does not conserve the internal energy (or temperature). This
can only be done if
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rather than the method in (29b) for e. However, the present operational
vertical finite difference method, as we have discussed it here, conserves
0.
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