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1. Introduction

Optimum interpolation is a technique for analyzing meteorological obser-

vations, transforming their information content into fields of meteorological

variables. It is based on the statistical characteristics of the fields

being analyzed. The earliest reference to the method is due to Eliassen

(1954), although Gandin (1963) must receive a great deal of credit for the

method's development and subsequent widespread use. Beginning in the

early 1970's, it became apparent that the advent of remotely-sensed

atmospheric data would greatly change the heretofore homogeneous character

of the data base (largely radiosondes). Optimum interpolation offered a

suitable framework for systematically treating data with different error

characteristics. Rutherford (1972) and Schlatter (1975) began developing

data assimilation systems based on optimum interpolation, and by 1979,

the year of the Global Weather Experiment, such systems were in use at

several research institutions and operational numerical weather prediction

centers.

This paper presents a summary of the basic formulation of the method,

within the very simple context of performing an analysis at one point

using only three pieces of information. Some of the method's characteristics

are then illustrated by means of a series of simple analysis problems.

2. Formulation

We assume for this development that we have one observation of

geopotential (Ho), and one of wind which is treated in the form of eastward
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(UO) and northward (VO) components, for a total of three pieces of information.

The analyzed values of these parameters (Ha, Ua, Va) at some point in the

vicinity of the observation may be written as a "guess" value of the parameter

(Hg, Ug, Vg), usually from a forecast, plus a correction formed by linear

combinations involving the observations.

Ha = Hg + al(Ho-Hg)l + a2(Uo-Ug)2 + a3(Vo-Vg)3

Ua = Ug + bl(Ho-Hg)1 + b2(Uo-Ug)2 + b3(Vo-Vg)3 (1)

Va = Vg + Cl(Ho-Hg)j + c2(Uo-Ug)2 + c3(Vo-Vg)3

where (Ho-Hg), etc. are the differences, or "residuals", between the data at an

observation location and the appropriate guess value interpolated to that

location, and the ai, bi, ci are coefficients which determine the weight

each datum receives in the analysis, relative to the guess value. The

analysis consists of determining the coefficients.

Note that observations of both geopotential and wind are used in the

analyses of both variables: this type of analysis is said to be "multivariate".

In contrast, an analysis which uses only observations of the variable being

analyzed is said to be "univariate".

In order to calculate the coefficients (ai, bi, ci), we begin by

subtracting the true values (HT, UT, VT) from both sides of eqns. (1),

changing the signs, and introducing the following definitions:

fa = FT-FH: true analysis error in the variable F(H, U, or V);

fg = FT-Fg: true guess error in F;

Fo = FT+$f: ef = error in observation of the variable F.

We note that the "observed residuals" Fo-Fg, may be rewritten as

Fo-Fg = FT-Fg+ef = fg+ef
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so that the observed residual may be expressed as the sum of the error in

the guess plus the error in the observation. Eqns. (1) may then be recast

in terms of these error quantities:

ha = hg - [al(hg+eh)1 + a2(Ug+Cu)2 + a3(Vg+Ev)3]

ua = Ug - [bl(hg+eh)1 + b2(ug+eu)2 + b3(vg+ev)3] (2)

va = vg - [Cl(hg+eh)1 + c2(Ug+eu)2 + c3(vg+ v)31

Optimum interpolation determines the coefficients (ai, bi, ci)

such that the mean-square analysis errors (ha, ua, - v a) are minimized.

(3)

ai(ha 27) = i (u a2 ) = i( 2 )0

The minimization process results in sets of three linear equations, one

set for each variable: for geopotential,

(hlh-+ 6h)al + (hlu2 )a2 + (hv 3)a3 = hlhg

Cu-2-)a1 + (u2u2+e u)a2 + (u2v3)a3 = u2hg (4)

v ia l + (v3u2)a2 + (v3v3+cv)a3 = v3hg.

The parenthetical quantities are various covariances of guess, or forecast,

errors. Note that the subscript g has been deleted from the forecast

error at an observation location, but retained in the forecast error at

the analysis point. For example, the term hlhg denotes the covariance

between the forecast geopotential error at observation location #1 (h1)

and its counterpart at the analysis point (hg). Quantities on the main

diagonal such as hjhl, etc., are recognized as the variances of the forecast

2 2 2

errors ah, au, av. The off-diagonal quantities are seen to be

cross-covariances between forecast errors of geopotential and those of wind.
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It should be noted that terms such as hicj and -hev have been

assumed to vanish.

For the u- and v-components, similar sets of equations may be obtained,

in which the ai are replaced by bi and ci and the hg in the covariances

on the right-hand side is replaced by ug and vg, respectively. So long

as the same set of observations is used for the analysis of geopotential

and the wind components, the forecast error covariance matrix on the left-

hand side of eqns. (4) is common to all three sets. The order of the three

sets is determined by the number of observations used in the analysis.

If the forecast error covariance matrix and the right-hand side

vectors can be specified, the matrix can be inverted and the three sets

solved for the unknowns ai, bi, ci. The analyzed values at the analysis

point may then be calculated from eqns. (1). It may also be shown that

the minimized analysis error variance may be determined from

ha = ah - alhlhg - a2u2hg - a3v3hg

Ua = au - blhlug - b2u2ug - b3v3ug (5)

Va = av - alhlvg - c2(u2vg) - c3v3vg.

It is computationally convenient to model the forecast error covariance

matrix by an analytic, differentiable function which approximates actual

forecast error covariances. In the NMC system, the height-height error

covariance is specified by

hihj = {o(h)io(h)j}{exp[-KH(si-sj)2]}{[1 + Kpln2 (pi/pj)]-l} (6)

where si-sj is the horizontal separation between points (i) and (j), and

Pi-pj is their vertical separation. This expression is in the form of a

triple product of a variance, a horizontal correlation, and a vertical
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correlation. The forecast error cross-covariances in eqns. (4) are

determined by assuming that the errors in geopotential, temperature, and

wind are related hydrostatically and geostrophically. Under these assumptions,

all forecast error covariances can be calculated by differentiation of eqn.

(6). Table 1 gives the differential relationship between hihj and all other

convariances.

Table 1. Covariance of the row variable with the column variable in terms
of the geopotential autocovariance hh, assuming that height,
temperature, and wind residuals are related through the geostrophic

and hydrostatic equations.

h t u v

g Dhh g Dhh 9 ~hh
h g ahh

hu f an fR Dz f fy f ax

g 3hh ( 2hh 2 32hh 2 32h
R 3 3%%z fR ~3ay fR D~3x

g2 a 2hh2 -' 2 a 2 hh 2 a2i'

f aq fR a az a nay fI anax

u~~~~~~~~~~ 32 2 2h--
Dhh _ g- h2 32-h-h

v _
f DE fR D~3z - 2 9C3y f ~3x

The main diagonal terms of eqns. (4) contain forecast error and

observational error variances which must be specified. With respect to

the former, it should be noted that the assumption of a hydrostatic and

geostrophic relationship between forecast errors implies a relationship

between the variances of the errors as well. It can be shown that

2= a (2KEg2/f2), (7)

and

2 = (2Kpg2/R2) (8)

where t is the forecast temperature error variance.

where at is the forecast temperature error variance.
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In an analysis/forecast data assimilation cycle, it is necessary to

2
predict the forecast geopotential error variance oh valid at the next

analysis time, usually a few hours in advance. For the NMC 6h cycle,

this is accomplished by assuming that oh at the next analysis time

(denoted by superscript n+l) is related to the analysis error variance at

time n:

nn
h = [(ha) 2 ] + D (9)

where D is an estimate of the forecast error growth rate determined from

verification statistics. In the NMC system, D is a function of variable

and pressure level, but not horizontal position.

The observational error variances ( Y, , z )in the

covariance matrix must be pre-specified. Typically, this is done by

classes of observations; that is, radiosondes are assigned one error

variance, satellite data another, aircraft another, etc. Current values

in use at NMC were adopted from the European Centre for Medium-Range Weather

Forecasting and may be found in Bengtsson (1981).

3. Characteristics

To illustrate some of the method's characteristics, we first consider

a problem in which we wish to perform an univariate analysis of geopotential

using only two geopotential observations. We will assume for all but the

last of these examples that the observations are arranged as in the schematic:
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that is, each is colinear with the analysis point and separated from it

by a distance 61 or 62 . The analysis equation may be written as12

ha - hg = Ah = al(hl+6 1) + a2 (.h2+2) (10)

Minimization of the mean-square analysis error leads to

- ~ 2
Chthl + Pl)al + (hth2 + lE2)>a2 = hlhg

(h2hI + 2E1),al + (h2 h2 + 2)a2 = h2hg (11)
Note that we have left open the possibility of correlated observational

errors through the presence of the term els2

For the covariance model, we assume that observations and analysis

point are at the same level, so that

hih j = ao e k6ij (12)

where .ij is the distance between (i) and (j). The elements of

the forecast error covariance matrix are

hlh h 2h2 = hlh2 = h2h = o e k (6l + 2) (13)

and the right-hand side is

2

hlh hhg = h2hg = e-kdl,2 (14)9 2 ~~~~~~~~~~~~~~~(14)
With eqns. (13) and (14) the solution of eqns. (11) are

2 22
(c2e-k(3l )( +E)_(~2e k(632 /Ic2e-k(61+62) +12]2 k~i 2 _____&2 _ -

2 1 2~1
a i: (15)

(a2+i2) (a2+--2)- [2e-k( i+62)2 ]2

and

2 )( [2e2k(1 +62)2

(.f2+ 1(2 2)+2[ 2e-k6 k(6 1 +6 2)+C2a2. = 1 m l~~~~ ~ ~~~~~~~~ 2 (16)

(,T2+E:12) (G2±s 2) - [a,2ekC(3l±(E2 1 12
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where ah2 has become a2 for convenience.

We now consider a series of examples in which (15) and (16) can be

simplified to illustrate some characteristics of optimum interpolation.

A. Random observational error: £I2 = 0

Datum #1 at analysis point: 61 = 0

Datum #2 far removed: 62 +

Both reports of same type: 2 22 2

The solutions become

a 2(a2+62) 1
a 1 = 2 2 = ; a2 = -

+£ l+E2/ 2

Thus, for a single observation located at the analysis point, we see

that if the datum is error-free, (£2=0) it receives a weight of unity; that is,

the analysis exactly reflects the datum. The effect of imperfect data is

to reduce the influence of the data in the analysis, in proportion to the

ratio of the observational error variance to the forecast error variance.

B. Random observational errors: cl2 = 0

Datum #1 at analysis point: 61 = 0

Datum #2 6 away: 62 = 6

Both of same type: = =

The solutions are

(2+c)2 (ag2a1 = i~ -]

- 2e-k6 2 1

a2 = L(2+ ) (c2e- k 6 ) ·

From this it may be seen that even if another observation is nearby,
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a perfect observation ( s2 = 0 ) located at the analysis point will be

reflected exactly and the others will receive no weight. For imperfect

data, however, both observations receive some weight.

C. Same circumstances as in (A) except that datum #1 is a distance

from the analysis point: 61 = 62 + .

-k62
ea1 = , a2 = 0

Thus the influence of a single imperfect datum is given by a the assumed

forecast error correlation function, reduced by the error variance ratio

c2/a2 .

D. Random observational errors: £e£2 = 0

Both observations equidistant from analysis point, but far enough

from each other to be uncorrelated: hlh2 = h2h1 = 0

Each datum has different error characteristics: E12 # £ 2

-k62 -k62
e e

a = ; a2 =
1+£12/2 1+622/a2

If 12 < C2 a 1, > a2 ; better quality data receives

more weight in the analysis.

E. Same circumstances as (D), except that hlh2, h2h1 $ 0 , but

the data are of the same type: £12 = £22 = £2

-k62
e

a1 = a 2 4k6Z

The two observations receive the same weight, but less than in (D);

thus the effect of interobservational correlation is to reduce the

influence of each datum in a univariate analysis.
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F. Observations and analysis point are at the vertices of an equilateral

triangle: 6 = 62 = 612 = 
1 2 -12

Both data of same type: e 1
2 = £2 = i2

Correlated observational errors: £1£2 #0

-k62
ea. =a2 k- 

2 1l+7/a2+ek 6 +E1+-2 /a

Thus data with positively-correlated observational errors receive

less weight than those with random errors, in univariate analysis. This

is not true in multivariate analysis.

G. We now consider the effect of wind data on the mass analysis (i.e.,

multivariate analysis). We assume one height observation and one wind

observation, colocated a distance 6 from the analysis point:

The analysis equation for geopotential is

ha - hg = Ah = alCVl+¢v) + a2(h2+ h) (17)

and the obtain after minimizing the mean-square analysis error

(vvl+J7 )a + (Vlh2) a2 = Vhll1v 1 1 2 2 i g

(18)

(h2v1) a1 + (h2h2+Z) a2 hh

Our covariance model is
- ~~2

h.h = 2e-kij; h.v. = g (h.h.)
1 z 13j f DX 1-j

(19)

so that the elements of the error covariance matrix become

h2h2 = Oh2; VlV= V2 = Oh2 (2kg2/f2 )

vlh2 = h2v1 = 0 (20)

vh =2g f oh2e- k h62 h = 2e-k62,
lg -f h 2 g h
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The solutions for a1 and a2 are

f -2 a 2e- k6 2

a __ = __ _ aJv.a=h e6(21)~~~~a 1 =- a 2;2 2 =

v v h h

Because a, and a2 have different dimensions, direct comparison as in

the univariate case is not possible. We instead examine the separate

contributions of the wind and height observations to the reduction of

analysis error variance,

277 =~ -avh-ah h (22)a h -alVlhg-a2h2hg 

For the case of perfect data (r2 = h2 = 0),

h 2 = ah2[1_e2k (1+2k2) ] (23)a h2
-2k 62

The factor e represents the reduction of error variance due only

to the height observation; its product with (1+2k82) repres:entvsthe

reduction due to both height and wind together. Eqn. (23) has been

evaluated numerically for several values of the separation distance 6 and

the results are presented in Table 2. Even at 8° latitude separate, the

reduction of error variance with both wind and height data is over 50%,

while with a height report alone, the reduction is only 20%. The effect

of the wind observation on the height analysis is clearly to improve the

accuracy of the analysis.

H. We now examine the influence of mass data on the wind analysis.

The configuration in example (A) is assumed. The analysis equation is

a-v g= Av = al(hl+ zh)+a 2 (h2+sh). (24)
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Analogous to eqns. (4), there results from the minimization

(hlhl +sh2)al + (hlh2+stC 2)a2 h 1vg (

(h2hl+E2s1)a1 + (h2h2+h
2)a2 = h2Vg

From the covariance model in example (G), we may calculate the elements

of the error covariance matrix
h h = h h = a 2
11 2 2 h -k[21
h h = hh = a 2e with IdlI = 1621

1~2 2 1 h ~~6 = XC(O)-x(l)

-2k I Ig 2 -k 6 2 62 = X(2)-X(O)
hivg = -h2vg = f =

The solutions for the coefficients are

-2klI6 [g [ e~k

a1 = -a2 f [l+R2 ( jl -p) - e 4k6 (2

where R2 = sh2/ah2, R2p = 2 h2 . We may write the anal-

error variance as

25)

26)

7)

ysis

Va 2 = v2 [1 - 2k62e-4 (28)
a v 1~~+R2 (lj_p)_-e-4k 6 28

We may see from eqn. (27) that, in contrast to the univariate analysis in

example (F), the effect of correlated observational errors (ppo) is to

increase the weight such an observation receives, and to increase the

reduction of analysis error variance. Indeed, data with perfectly

correlated errors (p=l) are as good as error-free data in this example.

It may also be noted that the effect of interobservational correlation

is to improve the analysis in this case.

4. Summary

By means of a series of simple analysis problems, we have illustrated

some of the behavior characteristics of optimum interpolation. Among

them are:
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o Observations are weighted in proportion to the ratio of the accuracy

of the data to the accuracy of the forecast in the vicinity of the

observation: the more accurate the data relative to the forecast the

more weight it receives in the analysis;

o All else being equal, observations with smaller error variances

receive more weight than those with larger ones;

o The effect on non-independence of observations is recognized by reducing

the weight such observations receive in univariate analyses;

o In the analysis of geopotential, a wind observation added to a geopotential

observation is more beneficial than a geopotential obseration by itself.

o Observations with random errors receive more weight in a univariate

analysis than those with correlated errors; but it is better to have

correlated than random errors in an analysis where observations of

one variable are being used to analyze another variable related to

the gradient of the first. 
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