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ABSTRACT

The deep-atmospheric nonhydrostatic global dynamics are introduced with
detailed discretization on spherical and generalized vertical coordinates. Based on the
NCEP global spectral model, the horizontal discretization (which is not described in this
manuscript) uses the spectral method with spherical spectral transformation; the vertical
discretization described in this paper is illustrated in detail up to the level of readiness for
programming.

The primitive equations contain three-dimensional momentum, enthalpy as a
thermodynamic variable, density, and tracers in height coordinates which are used to
convert to generalized vertical coordinates with virtual horizontal winds for spherical
coordinates. The equations are examined to show their characteristics of multiple
conservations, which are mass conservation, angular momentum conservation, entropy
conservation, and total energy conservation.

The concept of mean pressure at any given level by projecting unit air weight on
mean earth radius surface is utilized to have a mass coordinate, which results in a similar
formulation of the density equation in a hydrostatic system. The mean pressure at a given
model level, obtained from the weight concept, is called a coordinate pressure, which has
the property of a monotonic decrease with height suitable for the coordinate system.

The angular momentum conservation leads to a discretization for the relationship
among coordinate pressure, height, and temperature, which is similar to the hydrostatic
relationship in a hydrostatic system, also deduces a relationship for heights between
model levels and model layers. The total energy conservation is obtained from three
dimensional momentum equations, geopotential height, and the thermodynamic equation.
To do total energy conservation, we have a discretization for the total derivative of
pressure, which is discretized from the momentum equation and used for the
thermodynamic equation, to ensure total energy conservation. The potential enthalpy
conservation is also applied to the vertical advection for enthalpy in Eulerian system,
which requires multiplying enthalpy to vertical advection of logarithmic enthalpy.

Since sigma-pressure vertical coordinates are used in the NCEP GFS, we give a
specific discretization in sigma-pressure hybrid vertical coordinates. The two-time-level
semi-implicit semi-Lagrangian scheme is used as example for time integration
discretization. The linearization of all prognostic equations is required for the semi-
implicit time scheme. The matrices used in the semi-implicit time scheme for linear terms
are listed in appendices along with cold start initial fields from the hydrostatic system and
detailed derivations for the continuity equation from the height coordinate to generalized
hybrid vertical coordinates.



1. Introduction

In EMC (Environmental Modeling Center) of NCEP (National Centers for
Environmental Prediction), it is our job to develop numerical models for associated
centers within NCEP to use operationally. Not only it is presently a trend to have high-
resolution nonhydrostatic global modeling but it is also required as part of the EMC
support of the space weather prediction center (SWPC) of NCEP. Thus, a nonhydrostatic
and deep atmospheric global model should be considered, so that a global model can be
used to support weather and climate for the lower and upper atmosphere and be coupled
with other earth system models, such as ocean, ice, and space environment models.

In the literature, a deep-atmospheric nonhydrostatic system on generalized
coordinates was given in Staniforth and Wood (2003), the same system with mass
coordinates was illustrated in Wood and Staniforth (2003), and a similar system is used in
the UK Met Office (Davies et al. 2005). However, we have different considerations,
which may not be fully provided for us in the literature, and thus we have to research and
derive our own system. Instead of developing a totally new dynamics, the idea of
incremental implementation is adopted. The incremental changes will be added into the
existing GFS code, to minimize the amount of software development involved. The
spectral transformation will be kept in the horizontal but the vertical discretization is
changed. Since the deep-atmospheric nonhydrostatic dynamics are different from current
hydrostatic system, a new discretization has to be done with appropriate conservation
properties. The linearization of the equations for a semi-implicit time scheme in spectral
space has to be constructed and all matrices related to linearized terms have to be redone.

In this note, the formulations of the deep-atmospheric nonhydrostatic dynamics in
different vertical coordinates are presented in Section 2. The conservation properties in
generalized vertical coordinates are illustrated in Section 3. The mass coordinates for the
general concept of coordinate pressure from weight to determine a coordinate is
introduced in Section 4. Based on this coordinate pressure, prognostic equations are
given and discretization equations are obtained with all conservation in finite difference
form in Section 5. The linearization for the semi-implicit scheme is illustrated in Section
6. The example of a semi-implicit semi-Lagrangian time scheme is given in Section 7,
and a discussion of it is in Section 8. Several appendices are given for help with the
detailed derivations and easy coding into existing models, including examples of the base
state for linearization, linearized matrices, and initial condition preparation from existing
hydrostatic states.

2. Deep atmospheric nonhydrostatic system on spherical coordinates
The three dimensional momentum equations for a deep atmospheric

nonhydrostatic system on horizontal spherical coordinates and vertical height coordinates
can be found in text books, such as Haltiner and Williams (1979), and can be written as
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where r is the distance from earth center, A and ¢ are longitude and latitude, and g is a
function of r as in

g-25 (24)

where g is mean gravitational force at a , which is mean surface height, and r=a+z.
This deep atmospheric system can be simplified into a shallow atmospheric system by
setting r =a by Phillips (1966), which we used for current hydrostatic atmospheric
models without considering a prognostic equation of vertical motion and its related
Coriolis terms in horizontal momentum equations.

The related variables in the aforementioned momentum equations are pressure
and density, and they are governed by the ideal gas law and continuity equation as
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where the sum of N individual constituent partial pressures results in a total pressure with
a common temperature, the total density is a sum of densities of all constituents, and the
total gas constant R is the sum of each constituent contribution weighted by the specific
value. The continuity equation is suitable for each constituent and for the total densities.
From the ideal gas law, we need a thermodynamic equation to govern temperature by an
internal energy equation as
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Since we use the enthalpy 4 in our current NCEP GFS on a generalized hybrid
coordinate, we will use enthalpy as a thermodynamic variable for consistency and
backwards compatibility. After combining above two equations with the continuity

equation, we have
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where potential enthalpy
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is conserved for an adiabatic system.

2.9)

(2.10)

(2.11)

Then we apply a vertical coordinate conversion from the height coordinate to
generalized vertical coordinates with all above prognostic variables, and we can group

them as the following;
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The derivation to have f8 in the continuity equation can be found in Staniforth and Wood

(2003), with details in Appendix A of this note. In their paper, they provided details of
the derivation of all conservations: entropy, angular momentum, and total energy with

mass conservation.

For programming our code, the equations have to change with spherical mapping

by using virtual horizontal winds as
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Again, the continuity equation in Eq. (2.14€) is obtained by detailed derivation shown in
Appendix A.

3. Conservation properties of a deep atmospheric nonhydrostatic system

The deep atmospheric nonhydrostatic system on horizontal spherical coordinates
and a generalized vertical coordinate in Eq. (2.12) has multiple conservation properties.
The related details can be found in Staniforth and Wood (2003). For completeness, a
comprehensive derivation is provided here.

First, we can see from the continuity equation (2.12¢), that mass is conserved
when the force term is zero. Doing a global total integration of Eq. (2.12¢), we have
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where the last two terms are the top and bottom boundary conditions which are zero, and
the second and third terms in the first group vanish in the horizontal total integral. Thus,
finally, we have
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which indicates a conservation of total mass. Using the same step we can have entropy
conservation by combining the following potential enthalpy equations
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For the total global integral of the above, we have
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Wthh indicates conservation of total mass weighted potential enthalpy.

Next, let’s check the behavior of the total integral of angular momentum. The
angular momentum per unit mass can be defined as
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Thus, for the total integral of Eq. (3.10) with the above cancellation, we have
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which is zero under the condition of no source term, zero pressure at top of atmosphere,
and no ground surface gradient. Thus it indicates that total integration of mass weighted
angular momentum is governed by the ground surface torques.
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Next, let’s multiply Eq. (2.12a) by u, Eq. (2.12b) by v, and Eq. (2.12¢) by w, and
add them together so we have the kinetic energy equation as
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where K = E(uz +v7 + wz) as kinetic energy. Combining it with the continuity equation
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Last, for thermodynamic energy, we start from the thermodynamic equation with the
following variation as
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Again, combining with the continuity equation, we have
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Summing Eqs. (3.13), (3.15) and (3.17), and integrating globally, we obtain

d d

5§ﬁiﬁﬁ(K+d>+CvT)d)Ld¢d§=5ﬁﬁp(K+CI>+CvT)dv=O (3.18)

(3.13)

(3.17)

with a top boundary condition of zero pressure and the bottom boundary condition of
zero local change of terrain at the ground surface. As mentioned previously, we
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paraphrase all conservation properties here in this note, otherwise, you can find a detailed
derivation in Staniforth and Wood (2003). The most tricky or tedious derivation is to
convert the density equation in z to a generalized vertical coordinate, in which we use p

. . ar . oo .
in z coordinate but f=pr’ Cosqﬁ% for the continuity equation in generalized

2
coordinates, and p = p%g—g for spherical mapping and the generalized vertical
a

coordinate. The detailed derivation of these three conversions in the density equation can
be found in Appendix A.

4. Mass coordinates by coordinate pressure

Before we do a discretization, we would like to do incremental changes to the
vertical grid, which is similar to our existing grid system in Fig. 1. All the indices are
integers to make them easy to follow and code into a model. The variables at model
levels are noted with a hat, and variables without a hat are in model layers.

Continuity is used for constructing mass coordinates for most mass based vertical
coordinates. There are several ways to make mass coordinates, such as Laprise (1992),
Juang (1992, 2000) for nonhydrostatic systems, and Staniforth and Wood (2003) and
Wood and Staniforth (2003) for deep atmosphere nonhydrostatic systems. Again,
considering incremental changes, we will give a concept to construct mass coordinates
similar to a hydrostatic system in the continuity equation. The general concept of
measured mean pressure at any given location in the vertical sense is the weight on top of
the location divided by the area at the given location. Let’s give a mass above any given
level as
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thus, we get the following coordinate relationship from Eqgs. (4.3) and (4.4) as
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which is similar to the hydrostatic relationship in a hydrostatic system.

From our current generalized hybrid coordinate system for the continuity
equation, Eq. (4.5) has a form similar to the hydrostatic equation as mentioned. In this
way, the density in Eq. (2.14e) can be replaced by coordinate pressure gradient, which

defines the density with a constant gravitational force as
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Let’s return to the coordinate pressure definition and replace density with the
ideal gas relationship, then we have the following form for a vertical coordinate

relationship with coordinate pressure definition as
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which can be used to replace all coordinate terms related to the pressure gradients of
momentum equations. Put all 7’s into left hand side and apply derivative then do a
discretization so we have a relationship between coordinate pressure and height as

Pla=Fis 3(’(—?) @ (=P (4.15)
P8 /i

This becomes the diagnostic equation for height. Going back to Fig. 1, all prognostic
variables are in model layers, such as the three dimensional momentum, enthalpy, and
pressure. And coordinate pressure and model level height are defined by the continuity
equation and mass coordinate definition here. The constraint relationship to use on model
layer heights from model levels in Eq. (4.15) has to be determined by the conservation
requirement as in the following section.

5. Vertical discretization based on multiple conservations

In this section, we will use the mass conservation through coordinate pressure
discussed in the previous section to do further discretization of all equations based on
multi-conserving properties of angular momentum, total energy, and entropy (potential
enthalpy) .

5.1 Angular momentum considerations

First, we start from angular momentum, which is given in Section 3, Eq. (3.7),
and its total derivative without the source term is given as

dA Kh(&p o7p07Cf9r) (5.1

dt  p\or ¢ oror
where we use A as its definition with u, not u* in Eq. (3.8), and we expand the total
derivative with m in the advection term as
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combining it with the continuity equation in the previous section’s Eq. (4.6), we have
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dt\ag OAN\IC r ap\ag r ag\ag
__dpKkh(dp dpdg or

B __(5 EEJ)

After globally integrating the above equation, we will obtain a global mass weighted
angular momentum change. In other words, left-hand-side (LHS) of Eq. (5.3) retains only
the local change and RHS of Eq. (5.3) retains only the ground surface pressure gradient

with surface height. Thus, after vertically integrating the RHS of Eq. (5.3) with
coordinate pressure definition, we have

(5.3)
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then we apply a derivative by chain rule, and alter the sequence of derivatives to a single
variable, and the right hand side becomes
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When globally integrating of LHS and RHS in the above equation with pressure at the
top level either constant or zero, we have
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This will be always true if each group of coefficients at the same level of pressure
derivative is zero. Thus, we get
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with pressure at the top level as a zero derivative.
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For simplicity we can let aAf =% —las in the hydrostatic system, so p at a
P Dy

model layer is the mean of its neighboring pressures at model levels. Then we get
relationship for heights between layer and its neighboring levels as

r = ;r;l + ; 7 (5.10)
Based on this relationship and the relationship for heights at model levels Eq. (4.15), we
can use another way to describe the relationship between height at model levels and
model layers as

2 A
=7 +31_("—h) (fa p) (5.11)
2\ p ),

We can use Eq. (4.15) to have model level height as a summation from ground level up to
any given model level as

2 k-1 2 =
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and the relationships in Egs. (5.10) and (5.11) have model layer height as the summation
from ground level up to any given model layer as
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Thus, the pressure gradient in the latitudinal momentum equation can be written as
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then we put Eq. (5.13) into last terms of Eq. (5.14a), we have
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where A can be replaced by ¢ for longitudinal momentum, and
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In the case of a semi-Lagrangian model with tracers only in grid point space, the
derivatives of specific tracers are not available. To save on spectral transforms without
spectral transformation for N tracers, we will compute r (height) at a model layer by Eqgs.
(5.10) and (5.12), doing spectral derivatives in r for the momentum equations as follows

# * — A A 3
dug __WWe ey gy, Kb a9p 8 D= P 49 (5.162)
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* * *2 — A A 3
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5.2 Total energy conservation

Next, let’s check into total energy conservation. From Section 3, we know that the
energy conversion term exists in the kinetic energy equation as well as the
thermodynamic equation. And we concluded that conservation is valid while the energy
conversion term used in the kinetic energy equation applies to the thermodynamic energy
equation. This is true in the hydrostatic system shown in Juang (2005) and (2011) except
the conservation in the deep atmospheric nonhydrostatic system required three-
dimensional advection of the pressure gradient instead of only horizontal advection, as

_p |2, Kh1(p _dpIE I, o Khl(dp dpdCdr) . Khdp It
ag p r\dA 9 or dr p r\dep JIC dr dp p 9C dr (5.17)
__akh(op_opdEor\ aprh:(op opdar)_ap xhp it |
a& p \OA dCdrdr) o p \du JC drdu) o p IC dr

We use u here, as an easy way to absorb mapping factor m into the operators, so we can

use the following local symbolic derivative definitions to simplify the derivation later in
this subsection as
A oA +u oA _ V,*VA
oA au

. . (5.18)
dALA N JuA o,

oA au
Don’t confuse this local gradient here from the other definition.

(Vad)
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Thus, Eq. (5.17) can be rewritten, performing the chain rule, and expanding w by
the total derivative of r as follows
ap kh p Kh dp 3¢ %y, . ap Kh dp 9

———Vu*Vupr Ho V'~ T

ac p a& p J¢ or GC p dC dr

=_VH.(p3_P’f_hVH)+va .(G_P"_hvﬂ) (5.19a)

ac p aC p
apK_h&_pgvH VHr_a_p(_+V .VH +C&r)Kh07p0’,C

a8 p d¢ or aC\ dt dC) p dE or
then the horizontal advection of r in the last two terms will be cancelled out with the
remaining
--V, .(pa_ﬁK_th) v, (ap ih VH)_a_ﬁK_hd_pgﬁ_a_ﬁK_ha_pg (5.19b)
g p i p d p dC dr ot 9T p IC
The first term will be zero after global integral, and the last two terms can be expanded

by the chain rule for vertical derivatives on p as
_ab xh dp 9E dr _ 35 Kkh op ;
a& p dC dr ot 9C p IC

~ ~ - (5.20)
o (,abxhdtor), o f(aprhdCor) o aprhz), o (aprh;
dc\" o p or ot dC\d& p dr dt) I\ 4 p 07§ ag p
and the second term in RHS can be manipulated as
ap Kkh 9& J p 0 29 J J p Kh
d (9P Kkh JE or) _ r__r --p~ gror)_ (b (5.21)
d(‘,‘ ag p dr ot z?(;‘ &C at\og p

Then we deal with the three terms with p; the first is Eq. (5.21) which is the second term
in Eq. (5.20), and next, the last term in Eq. (5.20), and last, the second term in Eq.
(5.19b), so that we obtain

o (0p kh Kh op kh :
P—(—"—)% ey )
0t\ag p o p dc\ag p

Kh ap iV, . a_ﬁv 1% apC +p8p d(kh
p o\ o " a; aE o | dr
pTEL (o) 1w

aC dt dt yo& p dt

In summary, Eq. (5.17) can be equal to Eq. (5.19b) and equal to the following after
applying Eqgs. (5.20), (5.21) and (5.22) as

=V, pap KhVH _ 9, pKkhdEor) J( dpxh.) 13dpkhdp (5.19¢)
aC p d&\" ol p or dt) 9\ aC p ya& p dt

Finally, we have the energy conversion term. When we select from Eq. (5.19a) and Eq.
(5.19¢) with w term recovered, we have

(5.22)
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Lapxhdp __ VH.(a_pK_hVH)ﬁ_pK_hd_pg(w_vﬂ.VHr)

d dt d 0 ag or
yog p ~f.ip Epdt (5.232)
d( 0p khd
-—— p—p——g(w—VH *V,r)
oC\" doC p or
with further manipulation, we have
la_pK_hd_p=_pVH. a_pK_hVH _pi a_pK_hg(W_VH.VHr) (5.23b)
yo& p dt & p dC\d& p or
after some manipulations, then we do a discretization as
dp) _ . Ly ew A | vo o), a AW
(E)k_—ykpk(v,, (VH)+FVH Vv, Ar —FA(VH V,r )+r_2E k (5.24)
where
2
w=""w (5.25)
a

is a height-weighted vertical velocity. Finally, when we recover the local symbolic
gradients back to their usual form, we have

* * A3 * * A3 * * A3 * * A3
(uk-l_uk)ark +(w_uk+l)%+ Vi V|05 (i _via |95
7 r,)oA \r, n,) oA \r 1, )d r, L)oo
M T K Ten -t N )o@ A\l T ) 9@ (5.26)

2AF°
a’ Aw
+ [ —
r? Ar .

using the above discretization, which is obtained from kinetic equation, with the
thermodynamic equation will ensure total energy conservation.

5.3 Considering potential enthalpy conservation

Since we are using enthalpy as a prognostic equation, the potential enthalpy
conservation, see Egs. (2.10) and (2.11) in section 2, has to be considered which can be
written in logarithmic form as

l@=i(ln®)=0 (5.27)
O d dt

Combining with continuity equation we have

P melem 2P o lim 2 (VP nel+2 (P me|=0 (5.28)
ar\ag IA\ r a¢ dp\ r ag ag\ ag

Since horizontal is spectral computation, we do vertical discretization by equaling two
vertical terms before combination and after combination as
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ac\”ac a& ) ac ag\~ag

So vertical advection can be discretized, see Juang (2005, 2011) for details, as following

) =(ln®k_l—ln@k) :9_1:) +(ln@)k—ln(a,ﬁl) :9_ﬁ
k

J (éilnG)=(é‘§)i(ln®)+(ln®)i(é§) (5.29)

2(inp) 78| 2ffiom) |06

And it is the same for any variable in terms of no forcing in mass weighted advection.

Since h=0Om , so Inh=InO®+Inx is a linear computation. Next let’s start from Eqgs.
(29), (2.10), and (2.11), with conservation in terms of no external forcing as Q=0 and

dx . .
— =0, so the thermodynamic equation can be

: d
(§£<ln®> (5.30)

k+1

dt
dt ot a& p dt

Then we expand the equation into potential enthalpy, pressure and kappa, then apply total
derivatives of potential enthalpy and kappa are zero, we have

—ﬂé@—hlnﬁég—g+hx[i(ln£)+sz°V(ln£) ", 0h _ kh dp

— == (5.32)
0C Do i\ p, Do o p dt

Move all terms at LHS except vertical advection of 2 to RHS, expand total derivative of p

into logorithms of p, then we obtain the equation for vertical advection of £ as

> oh ~ 0 p . 0K ~ 0 p
= hE—(1 In£&— — | In=£ 532
o hCaC(n®)+h np0§a§+hKCa§(np0) (5.32)

Then we discretize the vertical advections in LHS by the same form as Eq. (5.30), so the
vertical advection of h can be

can\ _ |
(Caé)k 24p, Ca:

for a Eulerian system to conserve potential enthalpy.

h,_ Dy " dp ( h p )
In*—(k,_ -x, )In=2L |+ = | |[In—*%+(k, -k, )In—-][(5.33)
( hy ( . k) pk) a8 sl ( ‘ kl) Dia

k+l

If it is in a dimensional-split semi-Lagrangian system, Eq. (5.33) can be rewritten
with further discretization as

5%=h{i(gln@))+1n£i(§x)+xi(§1n£)-(1n®+2K1n£)i(§5)} (5.34)
o 98 Py 98 IC\" P Py )&

where 6 =1, it indicates that we can apply the flux form semi-Lagrangian advections with
a correction of the unit flux form semi-Lagrangian advection. Thus, to have potential
enthalpy conservation, we need do vertical flux form semi-Lagrangian advections of
logarithms of potential enthalpy, kappa, logarithms of pressure, and a unit value. For
three-dimensional advection, to have conservation in advection may requires three
dimensional flux form semi-Lagrangian advection.
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5.4 Coordinate vertical velocity

From the height-weighted coordinate vertical velocity in Eq. (5.25), we can have
the vertical momentum equation use a height-weighted coordinate vertical velocity. Let’s
start with the vertical momentum equation (2.14¢) and apply Eq. (4.5), then we have

Dt KD
t
Zz (5.35)
=m?i +m’fu +g FZAIZ
r a Ap
Then the total derivative of height-weighted coordinate vertical velocity will be

dw r*dw ) Ldr
(5.36)

dt ddt | ddt
4
*2 * % — Ap
=2a2w—+m2Ls +m2r— u + d — -1
r a’ a’ J. & a‘Ap
Furthermore, do a total derivative of Eq. (5.10) so we have

2 AD A 1 AD A
I W =§rk+lwk+l +§”ka
(5.37)

. 1= 12
W =W+ S W,
with the bottom boundary condition as
1/’\\}1 =]’]/ZZMT;<a_i;lq-’/nsz;‘a_’l/:1
RoA o hdg
A A . (5.38)
w=m" = u ——+v, ——
alr alp

a
Though our prognostic equation for vertical velocity is at model layers, we need it to be

at model levels for computation of the thermodynamic equation. We get vertical motion
at model levels by Eqgs. (5.38) and (5.37) for vertical motion at model layers.

6. Linearization for semi-implicit scheme

From the previous section, we can have all discretized prognostic equations
linearized, so that we can use the semi-implicit form in wave space. The linearization can
be done along a base state, which is defined and obtained in Appendix B.

6.1 generalized linear equations

First, we look at the horizontal momentum equations (2.14), which have linear

terms from the pressure gradient force in Eq. (5.14) as
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(d_”:) — KOkh’Ok Ip; ApOk 1 <K ApOk apk kE AﬁOi %>
= or ok

dt ), EorPor a‘M ApOk Eox 2 gk i1 gi aol
_AQOk 1 <K0kAp0k O’Ih kz Ap, > (613)
APy € \ 2Por  adA pOi a&)t
ApOk <K W, o'?Apk +§ hy, &Ap,>
APy €0 \2Poe a0A & py adk
(d_v;;) = KOkhOk IP, ApOk 1 Ko ho, Apok apk kE Al:?m 07pi>
dt ), EoPor AP ApOk Eok 2p0k adp 45 péi aly
_Alz()k L<K0kAﬁOk Ihy +§KOiAﬁOi ah, > (6.1b)
ADoe €i \ 2P0 @dp S p,;  adp
ApOk <K W, &Apk El’(o,'ho,' &Aﬁi>
Apo;< Ex \2Pox @09 o p, adp

these can be combined into divergence and vorticity as

(de) _ Koy Vip, + Apy, 1 <K0kh0k épOk Vip, +EK o, Apzol- Vzpi>
L

dt EoxPok ApOk Eox Pox [ Poi
_Alzmc 1 <K0kAp0k V2 h, EKO,APO, v h>
APor €ox \ 2P0 = Poi 62)
_Apy, 1 <K A V2 Aﬁ < Koilty; V2A§i>
ApOk Eor \2Pox io1 Poi
a) L,
dt ),
where
2 2
\%& =i2 a_2+a_2 (6.32)
a \oA" dp
. (au* v )
y S| Tt
adk adp), 63b)

which are the same definition as in hydrostatic system. So we can use existing spectral
transform routines with divergence and vorticity computation as in the shallow
atmosphere for computation of Eq. (6.3) here.

Before we can further linearize the vertical momentum and thermodynamics
equations, we found they have vertical differences of pressure and vertical velocity in the
linear forcing. The vertical differences of pressure and vertical velocity at a model layer
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are the differences between the two neighboring levels. Since all linearized terms are
computed at the model layers, we have to make the differences of pressure and vertical
velocity from model level be represented by themselves at the model layer. To do so,
let’s start with the relationship between levels and layers for pressure first. From

Ap, =p, - P, and p, = %( Py + Pruy)» We get that any given pressure at a model layer is

given by
k+1 l

= Y Ap,+=Ap, =P_Ap, (6.4)
P EK P+ Ap, = PAp
the same for vertical velocity with

k-1

- 2 - 1 . 2 -
W, =W, + ZAW,. + A =+ WA, (6.5)
So that we can have differences with the inverse of matrices P and W as
Ap, =Pp, (6.6)
AV =W, (9, - ) 6.7)

In this case, all vertical differencing at two neighboring model levels can be represented
by a matrix summation of its value at the model layers. Thus, the vertical momentum
equation, Eq. (5.36), can be linearized as

~ — 4 —
AP
L

dt Al:)()k ADy,
g€4 - (6.8)
= ~0kP_i1 i_TAﬁ
APy, ¢ APy, ‘

And the pressure and the thermodynamic equations, see Eq. (5.26), can be linearized as

d ; [528 N
(ﬁ) _ _YorPox D+ )/Okgp(z (Awk )L
dt ), Eok Koo, APy,

., (6.9)
_ _YorPox D, + V()kgp% W,
Eok Koo, Aoy
(%) _ _}’OkKOkhOk D, + YOkipok Wk;l‘x’i (6.10)
dr ), Eok Dok

Then, the remaining equation is the continuity equation. Since we are going to use
a semi-Lagrangian scheme, let’s have the total derivative as follows for linearization

d =~ s.=(d(ud) a(v 'aAﬁ L p
/N Ap | S e 2| Pl_(e) - 6.11
o oo )l (638 -(E3E). 61

For a specific coordinate, we may be able to linearize the vertical fluxes, last two terms in
the above equation, but for generalization and simplicity, we do divergence only here,
and do the rest in the next section as
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(dhApk) __Ap, L (du av ) __Apy, D (6.12)
dt ), Ty \adA  adg Eor

Thus, we have linearized equations, Egs. (6.2), (6.8), (6.9), (6.10) and (6.12), a for semi-
implicit time integration scheme.

6.2 Linearization along sigma-pressure coordinates

For a backward comparison similar to the hydrostatic system, and from Eq. (4.5)
we know that the coordinate pressure is monotonic, thus, we can use it for the vertical
coordlnate by predefining it as

pk A "'Bsz (6.13)
Thus, the previous generalized linearized equations will turn into following

(de) _ _ Kol V2p, AliOk L<K0kh Apozk V’p +EK01h01 APy, v2p >
dr ), EoxPor APy o 2pg; il 01

APoi €0x \ 2P0 il

k-l
_Apy 1 <K My AB, k4 KOihOiABOi>V2f)S
ApOk €\ 2Poi il i

k-1
T <K‘”‘Ap‘”‘V I+ E KoiBPoi h> (6.14)

~ — 4 — N
(%) ~8%up1, 8 AB D (6.15)

dt ), Apy, " ADy,

with a total vertical summation of all layers for Eq. (6.11), we have

~ K = = * *
By OB Py OBy EA_ J_[u +L V_ -0 (6.16)
ot aor adp adk aly .

k=1 gk k=1

and the linearized form is

(D_ﬁs) -y B pye 6.17)

Dr ), =1 €ok

where

Db _ .y [y 9Py 0P (6.18)
Dt ot “ aor alQ

k (6.19)
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is the total vertical contribution of advection to the surface coordinate pressure. Thus, for
the linearization along a sigma-pressure coordinate, we need Eqgs. (6.14), (6.15), and
(6.17), which change into using coordinate surface pressure, and Egs. (6.9) and (6.10) to
be completed.

7. Applying a SETTLS scheme for semi-implicit and semi-Lagrangian time
integration

There are several semi-implicit and semi-Lagrangian time integration schemes in
the literature. Since we have a SETTLS scheme in the NCEP GSM code, we can derive
the solution of the semi-implicit and semi-Lagrangian methods along the lines of a
SETTLS scheme, however, the manipulation and final computation sequences in this
section can be used for any time scheme.

First, let’s introduce the formula of the SETTLS scheme. It can be found in Hortel
(1999), and we give details here. Any location along the advection can be expanded by a
Taylor series as

f(x+Ax,t+5t)=f(x,t)+(ziAx+%5t)+i(az—f(Ax)z+62—{(5t)2+62—fm5t +.(7.1)
X

2!\ ax? at axot
df . Ax
where the second term on the RHS can be replaced by % along the velocity of u = 5
t t

dzf
dr?

and the third term can be approximated to

1
t t+—0t
dr\ (o) (a*r\™
t+6z.z ’+6t(—) + 312 J
Jone =1 dt 21 \ar? |

x+—Ax
2

at x+%Ax and t+%6t , thus, we have

X

=/ +5t(ﬂ)t +@(dz—f) B

dt), 2V \d’) 1
2 (7.2)
(]
CoeY \ar ) \ar
zf;+5t(i) +( ) dl x+Ax dt X
dt), 2! ot
t -0t t
Rt
2 dt), \dt], dt ) ., a
Based on this approximation, we can summarize the advection with the following
X = x5tV 2
(7.3)

V2V -y
2

n
~ X, +0t
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which determines the location of the departure and arrival locations with velocities at the
departure and arrival locations for current and past times. Any total derivative of all
prognostic variables and their associated Lagrangian forcing (source terms) can be the
same as x and V, respectively. Thus, any given prognostic equation can be illustrated as
follows for this forcing method. For any given prognostic equation we have

YA _F_L+N (7.4)
dt

where A is any prognostic variable, F is its Lagrangian forcing which can be separated
into linear terms L and nonlinear terms N. So the semi-Lagrangian scheme can be written
and expanded by the above scheme as

A =AY +6t(F L) 2 +c3tL

1 1
= Al +5t(aL'/':1 +(-a)L,-L,> |+0tF,, >

(7.5)
n n+l
=A) +(5t(o:L'/’§+l +(-a)L, -aL), (1 —a)L'gl)+5tM

= Ay +ot(a(Ly - L) - (- a)(L, —L’gl>)+5tF: +225 i

where an un-centered option is used for the linear terms by a. With rearrangement to
group departure and arrival terms together and put the unknown term onto the LHS of Eq.
(7.5), we have

2Fn _Fn—l Fn

A —adtdL = Al —(1- a)at(Lg -y ) + ét% +0t - Al =S, (7.6)
where

SAT = AV — AL (7.72)
SL! =L - L, (7.7b)

Then we can apply Eq. (7.6) to all prognostic equations with linear equations
from Eqgs. (6.14), (6.15), (6.10), (6.9) and (6.17), respectively, as follows:

D] - ”(’; +1) a6t (A ,0p, + B, Ok, +¢,07,) = S, (7.8)
8, + St (by 0P, ~Ty0p,) = S, (7.8b)
Oh, +adt( f,,0D; = Z,6%,) =S, (7.8¢)
Op, +adt(dy 0D, ~M, oW, ) =S, (7.8d)
8p, + ot 0D, =S (7.8e)

where all S terms are computed following Eq. (7.6) by semi-Lagrangian advection
through the SETTLS scheme. All matrices in Eq. (7.8) for a given layer are

A, = Ko Mo _ AZOk L< oiho 0/< EKOIh . Ap01> (7.9a)
EPor  ADor Eoi i

0i
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kel =
B, - Apy, 1 <K0kAp0k+ KiAPy > (7.9b)
ApOk Er \ 2P0 i1 Poi

r -2 fou P! (7.9¢)
Apok

7, = LuPo - (7.9d)

— 2
Y, -
- fo8Pox pi (7.9¢)
KMo, APy,
and the vector in Eq. (7.8e) is
K ~
I, = E% (7.9f)

: E,.
i=1 0i
and the constants for a given layer k are

A K, AB, QK h,AB,,
ey = Do < E 0i'toi 0;> (7.9g)

ki

ApOk €\ 2Poi il Poi
by, = AéABk (7.9f)
Dok
K,.h
£ = YorKoi ok (7.9h)
Eok
dy, = YoxPox. (7.9i)
Eok

The details of the matrices, vectors, and constants are given in Appendix C with an
example for 6 layers.

Using Eq. (7.8), we can start to solve for the n+1 values by eliminating variables
in spectral space. First, we put Eqs. (7.8d) and (7.8e) into Eq. (7.8b) to solve the w
equation as

o, =[1=(cdr) T M, ] [(c01)’ (BT, + Ty, )OD; +5,, ~adr(byS; =TS, )| (7.10)

ki™ p;
then by putting Eq. (7.10) into Egs. (7.8c) and (7.8d), we have

Oh, =S, —adtf, 0D, +adtZ,
(7.11)

ki~ p;

[I—(aét)2 r,{,.Mij]_1 [(aét)z(bOkHli+Fkid0i)6Dl.*+ka—aét(bOkS, T,S )]
dp, =S, —adtd, 0D, + adtM,,

" (7.12)

ki~ p;

Finally, we put Egs. (7.11), (7.12) and (7.8e) into Eq. (7.8a), and we get

[I—(aét)zl"kiMij]_l[(aét)z(bOkH”+Fkid0i)5D;+ka—aét(bOkS I, )]
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oD =(I+Q)_1{SD* N ”(”+1)a5t<(A S, +B,S, +e0kS;,&)

: az ki~ p;
(7.13)
5 -1
+adt (A M, + B,GZU.)[I —(adt) T M, ]kj (Swj - aét(bo_,-S,-—,\_ -I,S, ))>}
where
Q= i :- D (aét)2 {(AkidOi +B, fo: + eUkH”)
; (7.14)

-1
~ (1) (A M, +BkiZl.j)[I—(a6t)2 r_,.,M,k] (b, T, +T j,do,)}
After we obtain the divergence change in Eq. (7.13), we can get the coordinate vertical
velocity change from Eq. (7.10) with a divergence change. Then by using the divergence
change and coordinate vertical velocity change, we can solve for h and pressure changes
with Eqgs. (7.8c) and (7.8d), and the coordinate pressure change can be solved by Eq.
(7.8e) by a divergence change. With all variable changes solved, the n+1 prognostic
variables are obtained.

8. Conclusion and discussion

A vertical discretization of a deep atmospheric nonhydrostatic system has been
provided. However, there are several new methods introduced in this note, which are not
published in any literature. We don’t know whether it is a proper method for deep
atmospheric nonhydrostatic dynamics. For example, the mass coordinates defined here
are somewhat different from Wood and Staniforth (2003), which were given based on the
concept of Laprise’s mass conservation. What we introduced here is the concept of mean
pressure at any given surface from the air weight on top of the surface, and normalizes it
on the mean earth radius with mean gravitational force. Though the forms are slightly
different, the mass coordinate concept is the same.

Based on the coordinate pressure, we have found several other variables can be
used as height-weighted to simplify the discretization, such as height-weighted
coordinate vertical velocity, and height-weighted coordinate density. And the simplicity
of the linear average of the values at neighboring model levels can be represented as the
value at the model layer, such as with pressure, cubic height, and height-weighted
coordinate vertical velocity. All these discretizations are not found in the literature, thus,
it will be important to code the NCEP GSM following these discretizations to ensure
these discretization equations are done properly.

From the angular momentum and total energy conservation properties, we can
have following conclusions; (1) a deep-atmospheric system “has to be” a nonhydrostatic
system with vertical component of Coriolis force, because w is shown in angular
momentum conservation property which requires w equation and vertical component of
Coriolis force; (2) a hydrostatic system “has to be” shallow atmosphere, because in
hydrostatic system, w equation is not used, so vertical component of Coriolis force should
not be existed in the horizontal momentum equation, thus r has to be constant for angular
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momrntum conservation equation without w; (3) a nonhydrostaic system “can be” a
shallow atmosphere without vertical component of Coriolis force, because angular
momentum has no w due to r=a; and (4) a nonhydrostatic system “can be” a deep
atmosphere system with vertical component of Coriolis force.

Furthermore, in this note, we have not included all possible numerical techniques,
such as horizontal diffusion to control short wave noise, divergence damping to control
excessive strong wind for Eulerian system and strong wind deformation for semi-
Lagrangian system, perturbation on surface pressure advection with related to terrain to
avoid orographic resonance, and iteration to solve geopotential height due to the possible
unstable from nonhydrostatic mass coordinates used in nonhydrostatic system. We may
need some of these techniques after we code the system and will be written in the future
note. Nonetheless, this note is sufficient to serve for starting a deep-atmospheric
nonhydrostatic dynamics modeling on the sigma-pressure generalized hybrid coordinates.
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Appendix A
Detailed derivation for model-used continuity equation from height coordinate

Converting the density equation in different coordinates for the deep-atmospheric
nonhydrostatic dynamics is somewhat tricky. Thus, this appendix will provide a detailed
derivation for the density equation from z coordinates to generalized coordinates and to
the spherical virtual wind generalized coordinate. The density equation in height
coordinates as Eq. (2.6) can be written in direct conversion form as

ap d d J
o ocor 1 |4 E(p”) o d e\reosd) E(pr W)_ (A.1)
—_— =+ ——| —(pu ———+—(pvcos¢)——— +—2——Fp
at O gt rcos¢| dA ar  GA ar | r* I

il il g e

which is not the final form because there are two local time derivatives that should be
taken care of. To do so, we put w in generalized coordinate form as follows

SO, M O YO e (A2)
at rcosgpdr rdp " IC
and into the last term of Eq. (A.1), then we do each dimension separately in following

equations, first for the temporal term as

a< 2ar> dp a<zar>
1 9¢ ot/ _aLdr p oL\ ot

P2 drdra o Or
0 0 0
g g g " (A3)
ap &<a(,s ,3)> ap < >
_ofdr p 9g\ot _ofor poar\ 9/
ar gt ar ar oty Or
ag ag ag ag
the latitudinal terms as
Jd u or 0 J rr o
—{( pr’ - 7<pu> <z a7
198 rcosp i/ 1 3¢ Jr . pu dC \rcos¢ diA
r’ ar rcosg Ir  gr ar
9¢ 9c 95 (A4)
J rr or
1 7<pu> a2 g
_ ag ﬁ_l_ﬂ dA \rcos¢ d&
rcos¢p Ir  GA 1’ ar
0C 0C

the logitudinal terms as
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r ar r ar rcos¢g M) r’ ar
9¢ 9¢ GC (A.5)

J r roor
1 é‘<p o8 ¢> U 8¢ r dg
" rcos¢ ar 07¢ i ar

J przvcosq)ﬁ i< vcos¢> J 72 ar
19 reosp dp/ _19g P r? , pveosg 9E \rcosg dg

0C ¢
and the vertical term as
J , or
iaé<p c C>=iaé<pg 3C> (A.6)
r’ ar r’ ar '
¢ ¢

Then we put Egs. (A.3)-(A.6) into Eq. (A.1), and we have

g
o, po\ 9/, 1 (i<pu>+%<pvcos¢>)+

o0 - or rcosg\ dA
d
¢ (A7)
J r’ o or J r or J > L, 0r
FrL (e {per
pu IA \rcosg € yu a¢ r é‘C i a& ag _F
rz ﬁ rz or rz ﬂ “tp
ag ag ag
d
and by multiplying the above with r écosq) = cos¢ we get
da af d J
acos¢—+cos¢p—+— —(puy+—(pvcosg) |+
at at oA op (A8)

a Jd Ja
puﬁ<—>+pvcos¢a¢<r>+cos¢ §<pCO{> acosgF,

ad
let 5= przécos¢= pocosg and put it into the above equation, we get the density

equation in generalized coordinates as

B, 0
9 A
o a}u<ﬁ > ¢<ﬁ¢>+ §<ﬁ§> (A9
which is Eq. (2.12e). Note that
dm = pdv = pddydsz = pr* g—gcos¢dkd¢d§ _ BdAddE (A.10)

so that p is the density for x,y, and z coordinates and S is the density for A,¢, and &
coordinates.
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It is the same procedure for generalized coordinates with virtual wind. The
density equation with virtual wind in the z coordinate can be written as

9 d, o d, | 14
a/t) m [M(pu)+£(pv )}+r—2;(pr w)=F, (A.11)

Using the coordinate conversion, we can have the above equation in direct conversion
form as

ap zg o m|a, . j;(p”*)&r J . ag( *)ar I;C(pﬂw)
A P el M T ol e Tl W T
9 Gl g &

again, which is not the final form because there are two local time derivatives that should
be taken care of. Again, to do so, we put w into generalized coordinates with virtual wind
as follows

ar u ar v dr Lor
= tm ——+m’——+—
at r oA rdp " IC

into the last term of Eq. (A.12), then we do each dimension separately in the following
equations, first for the temporal term as it is the same as Eq. (A.3) and the third
dimension as is the same as in Eq. (A.6); the remainder is the horizontal dimension in
Eqgs. (A.14) and (A.15).

The latitudinal term as

O amiary g o (rar
i 0C r oA _ m? E(pu ) or N m*ou’ dE\ r A
. = a

(A.13)

r ar rodr  gA r ar
9 9 9 (A.14)
. a(ror
_m’ aé‘( )ﬂr m’ou’ OA\ r &
—_=—+
roodr  gr ar
e ag
and longitudinal term next
Jd 2 m*v" dr J . Jd|( ,10r
- v I o L — |
1 ag(p r d(p) m’ ag(pv ) ar m’pv’ GC( r&(p)
— =+
r’ ar r ar g r’ ar
9 9 9t (A.15)
(v o (ror
_m_zaé-pv)ﬁ_'_mzpv*a(p r dg
o a g ar
ag g

Then we put Egs. (A.3), (A.14), (A.15), and (A.6) into Eq. (A.12), and we have
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a(ﬁév) ‘?VQ&J <9VQ&J d(péﬂﬁr) (A.16)
2 * 2 *
ﬁzat il mopu oA\ r 9 Lmpy op\ r d& +iza;‘ dg _F

7 ar T T -
o o e ag
2
when we multiply the above with o = r_2;"_r we get
a
ap Ja o d « J
a—+p—+m —|—|(pu |+—(pv ||+
e el

(A.17)
s o« 0 [ , + 0 [ 0 ;

—=1|+ —|=|+— =aF
m-pu (M(r) m-pv 8(0(}’) aé(p@a) afk,

. r* or . . . L
let p = p—2£ and put it into the above equation, we get the density equation in
a

generalized coordinates as

1o AN A A N I . .
—+—|p A|+— +— =F (A.18)
(p ) au(p M) aé(p C) g

Thus, the cosine is removed and the density is more like a height-weighted density.
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Appendix B
The base state for linearization

To linearize the discretized equations, we have to define a base state, as usually
used in the NCEP GFS, which is a rest atmosphere with a given balanced hydrostatic
state. Let’s start by defining following constants

Do, =101.326 (B.1)
Ty, =a=6371220 (B.2)
and the given thermodynamic constants for

Ty, (B.3)

which can be a constant (300K) or a function of a given lapse rate. And the related
constants can be listed as follows

hy =C,, Ty, (B.4)
Koo =Ry /Cy. (B.5)

Then the base coordinate pressures at all levels can be defined by the base pressure at the
first level as

A

Pox = Ak + é1JA701 (B.6)
And from discretized form of Eq. (4.5)

2

APy _ ﬁAOk - 1?0k+1 - _pOkgro_/zc (B.7)
Ary Top =Topan a

and base hydrostatic state

Apy, _ pAOk - €0k+1 - (B.8)
Ary, Tok = Horwt

we have a relation between base pressure and base coordinate pressure as
2

~ d
Apy, = APy, —- (B.9)

Tok
To obtain base pressure, let’s have the first guess Ap,, = Ap,, and use Eq. (B.8) to obtain

Toar = Tor +2 IA)Ok — {70“1 KOk_hOk (B.10)
Pox * Pors1 8
And value at model layers as
| TN
Tox =§(r03k+r03k+1) (B.11)

Then we use r in Eq. (B.11) to obtain new Ap,, by Eq. (B.9), then repeat through (B.10)
and (B.11) to get convergence of Ap,, . Thus, we have all base fields for linearization.
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Appendix C
Matrices for semi-implicit scheme

We can summarize all linear terms in Section 6 with the definition in Section 7
shown here with their matrices and vectors for the semi-implicit scheme as

D:

o), (C'D
&, =

w C2
dt )L o0k Ps kiPi ( )
@) - _d, D + M, 7, 7
dt ),

%) - £ D +Z.W, 0
dat ),

; k) =_AkiV2pi_BkiV2hi_ekV2pS )
dr ),

Here we use only 6 layers for an example. In order to have the same vertical index
direction as in the model, as in Fig. 1, we make the conventional matrix index in
following way, for any given matrix B, as

B, B, B, B, B, B,
B, By, B, B, B, B
g_| B Bs Bu Bs B, B, (C.6)
By Bys B, B, B, B,
B, B, B, B, B, B,
| Bq Bs B. Bs B, B,

Then the matrix P, for converting differences in pressure at neighboring model levels to
the pressure at a model layer is as follows

05 0 0 0 0
05 0 0 0
1 05 0 0
1 1 05 0
1 1 1 05
11 1 1 05

(C.7)

e e e
S O O O O

the same for matrix W, for converting the difference in height-weighted coordinate
vertical velocity at neighboring model levels to a model layer as
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05 1 1 11
0 05 1 11
wo| 0 0 05 1 1 1 €38
0 0 0 05 1 1
0 0 0 0 05 1
0 0 0 0 0 05|

We need to do a matrix invert for P and W in following matrices. Let’s start by listing
matrices, vectors, and constants for all linear equations from (C.1) to (C.5).

The vector for Eq. (C.1) is
= Aﬁ% Al:’os A12704 Al:’oa Aﬁoz Al:’m (C.9)

€06 €os €04 €03 En €01

The matrix for Eq. (C.2) with inverted matrix P is

g/ ADys -
gt/ A, 05 0 O
820,/ APy,
Zeos | APy
8t | APy
22/ APy,
The constant for Eq. (C.2) is

by =%AB,{ (C.11)

Do

(C.10)

o O O O O

S ) G U VN —Y
—
—_
=)
(9)]

The matrix M for Eq. (C.3) follows with inverted matrix W

Y068Pos /(K06h06Al:706)

}’osgpés K oshosAl:’OS 05 1 1

704§p§4 K 04h04A1%04

]

9]

T =
—

(C.12)

S O O O O
S O O O
N T N S

Yoo gpgz Kool Af’oz

/ )
/ )
Y0:8P0s ! (KoshosAPs)
/( ) 0 0 05
Yor8Pon ! (Ko1h01 Aoy )
the constant for Eq. (C.3) is

dy, = Torlok (C.13)
Eok
The matrix Z for Eq. (C.4) with inverted matrix W is

33



Y068Pos ! Al:’os

£, = YorKor o
0k

o AG 05 1 1 1 1 1
Yo058Pos 1305 0 05 1 1 1 1
Yos8Pos /MPos | O 0 05 1 1 1
Y038Po3 | APy 0 0 0 05 1 1
— = 0 0 0 0 05 1
Y028P02 | AP,
_ ~ 0 0 0 0 0 05
Y018Po1 | APy, )
The constant for Eq. (C.4) is
Eok
Then the matrix A for Eq. (C.5) is
ApOé KOGhOGAﬁOG KOShOSA]:)OS K04hO4A[:)04 K03h03A§03 KOZhOZA[:)OZ KOlhOIA[:)OI
APoEos 2o Pos Pas Pas P Pa,
Al)()S 0 KOShOSAﬁOS K04hO4Al_704 K03hO3AI_703 K02h02Al_?02 KOlhOIAl_?Ol
APys€os 2pos Pos Pos Pon Por
%p04 0 0 K04hO4ApO4 K03h03Al_)03 KOZhOZAﬁOZ KOlhOIAﬁOI
APy,€, 21734 p§3 sz pél
% O 0 0 K03h03Aﬁ03 K02h02ApUZ KOIhOIApUl
APys€s 2p§3 péz pél
& 0 0 0 KozhozAﬁoz KmhmAﬁm
APty 2 péz pg |
Ap,, Ko,y A,
—Aﬁ()lgm 0 0 0 0 0 012012 01
Poi
koo 0 0 0 0
Pos€os
0o ks 0 0 0
Pos€os
0 0o ke 0 0
Pos€os
0 0 0 lhso 0
Po3éos
0 0 0 0 fefe
P22
0 0 0 0 o uhu
Poi€o ]

and the matrix B for Eq. (C.5) is the following
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Apye K OéAf)% K osAl:’()s K 04Al:704 K 03AI:703 K ozAl:’oz K mAl:’m
APots | 2Pos  Pos Pos P P Po.
Ap,s 0 KosBPos  KouBPos  KpsBPys  KaBPyy  KoiBPo
APistos 2ps Pos Pos Po> Pa,
%Pm 0 0 KouAPoy  KosDPyy KBy KoiAPy
B- APys€os 2[954 p§3 péz pél (C.17)
%pOS 0 0 0 KpsAPys  KppBAPyy  KoiAPy,
APys€ns 21733 péz Pél
époz 0 0 0 0 KpAPy,  KoAPy,
APy€n 2p0, P
TR 0 0 0 0  Fultu
APy €0 2p3 1

finally, the constant for Eq. (C.5) is

k=1
ey = AZOk L<KkhkABk + E KOihOiABOi> (C.18)
APy ok \ 2P0 i= Doi

All these are prepared initially and used to construct further matrices for the semi-implicit
computation.
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Appendix D
Initial conditions for a cold start from the hydrostatic system

Initial conditions from hydrostatic system will require the generation of vertical
velocity and a vertical interpolation from the pressure defined hydrostatic system to a
coordinate pressure defined deep atmospheric nonhydrostatic system. The pressure in
deep-atmospheric nonhydrostatic system is also embedded in the relationship between
coordinate pressure and height.

From our current hydrostatic data system, we have pressure defined as

Py =Ak+ékps (D.1)
and

Pr = %(ﬁk + Dia ) (D.2)
and for hydrostatic relationship in the hydrostatic system, we have

Zn =2+ (ﬁk - ﬁk+1)Kk_l/ﬁ( (D.3)

k
so the coordinate pressure in the hydrostatic system can be computed based on Eq. (4.15)

as

A

(I%k)hyd _ (£k+1 )hyd . ((2 + a)Z;a;(Z + a)z ) (i_i)k D4

with zero at top of coordinate pressure, and the coordinate pressure at ground surface
becomes

z (2 _Kﬂil_?ks(pg)
P (p S)hyd ; 3a \kh), B
Then the coordinate pressure in deep-atmospheric nonhydrostatic system is defined by
Eq. (6.13) to obtain new coordinates defined by coordinate pressure. So the prognostic
variables in hydrostatic system can be interpolated to a deep atmospheric nonhydrostatic
system by the coordinate depth between Eq. (D.4) and Eq. (6.13). The prognostic
variables in this interpolation can be three dimensional momentum, enthalpy, and tracers.
Then the iteration process in Appendix B is used to obtain regular pressure, which
satisfies hydrostatic relationship and balanced with coordinate pressure.

We can obtain vertical motion from the hydrostatic system then interpolate as we
mentioned in the last paragraph, or we can obtain it after interpolation in the deep
atmospheric nonhydrostatic system. To get vertical motion in the hydrostatic system, we
can do a total derivative for Eq. (D.3) and get
"?}k+1 =y’{;k+K’<_hk%_A kKk_}zlk% (D.6)
pg dr P8 dt

and from Eq. (6.7), the above equation can be written as
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Wy =W, + Kk_hk(]);il % - %@) (D.7)
pg\ ~ dr yp, dt
From the hydrostatic system, see Juang (2011) Eq. (B.3), we know

K

% B m?z{vk* * V(P + Pra) - i(ApiD,.* +V VApi)_ E (ApiDj Vi VApi)} e
Py i=k+1

and boundary conditions for Eq. (D.7) is

W, =m’|u, 9 , v 92, (D.9)
aoi algp
and all vertical motion at model layers is given as
1,. .
W =2 (Wt W) (D.10)

Then the vertical motion is interpolated from the hydrostatic system to deep atmosphere
nonhydrostatic system as mentioned.

However, to get vertical motion in a deep atmospheric nonhydrostatic system with
other interpolated prognostic variables, we can start with Eq. (5.11) as a total derivative

as
V%/kﬂ =v:Vk+Kkhk AB, ap, —Alk’(k_lzkﬂ (D.11)
P8 dt Ypi 8 dt

where the second term on the RHS can be given by Eq. (4.11) and the third term on the
RHS is given by Eq. (5.26). Then the coordinate vertical motion at a model layer is given
by Eq. (5.37) and the bottom condition by Eq. (5.38).
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1

Fig. 1 The vertical grid structure with layers and levels is used in discretization. Integers
are used to index the layers and levels. Variables with a hat are on levels, and without a

hat are on layers.
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