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ABSTRACT 
 
 The deep-atmospheric nonhydrostatic global dynamics are introduced with 
detailed discretization on spherical and generalized vertical coordinates. Based on the 
NCEP global spectral model, the horizontal discretization (which is not described in this 
manuscript) uses the spectral method with spherical spectral transformation; the vertical 
discretization described in this paper is illustrated in detail up to the level of readiness for 
programming. 
 
 The primitive equations contain three-dimensional momentum, enthalpy as a 
thermodynamic variable, density, and tracers in height coordinates which are used to 
convert to generalized vertical coordinates with virtual horizontal winds for spherical 
coordinates. The equations are examined to show their characteristics of multiple 
conservations, which are mass conservation, angular momentum conservation, entropy 
conservation, and total energy conservation. 
 
 The concept of mean pressure at any given level by projecting unit air weight on 
mean earth radius surface is utilized to have a mass coordinate, which results in a similar 
formulation of the density equation in a hydrostatic system. The mean pressure at a given 
model level, obtained from the weight concept, is called a coordinate pressure, which has 
the property of a monotonic decrease with height suitable for the coordinate system.  
 
 The angular momentum conservation leads to a discretization for the relationship 
among coordinate pressure, height, and temperature, which is similar to the hydrostatic 
relationship in a hydrostatic system, also deduces a relationship for heights between 
model levels and model layers.  The total energy conservation is obtained from three 
dimensional momentum equations, geopotential height, and the thermodynamic equation. 
To do total energy conservation, we have a discretization for the total derivative of 
pressure, which is discretized from the momentum equation and used for the 
thermodynamic equation, to ensure total energy conservation. The potential enthalpy 
conservation is also applied to the vertical advection for enthalpy in Eulerian system, 
which requires multiplying enthalpy to vertical advection of logarithmic enthalpy. 
 
 Since sigma-pressure vertical coordinates are used in the NCEP GFS, we give a 
specific discretization in sigma-pressure hybrid vertical coordinates. The two-time-level 
semi-implicit semi-Lagrangian scheme is used as example for time integration 
discretization. The linearization of all prognostic equations is required for the semi-
implicit time scheme. The matrices used in the semi-implicit time scheme for linear terms 
are listed in appendices along with cold start initial fields from the hydrostatic system and 
detailed derivations for the continuity equation from the height coordinate to generalized 
hybrid vertical coordinates. 
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1.  Introduction 
 
 In EMC (Environmental Modeling Center) of NCEP (National Centers for 
Environmental Prediction), it is our job to develop numerical models for associated 
centers within NCEP to use operationally.  Not only it is presently a trend to have high-
resolution nonhydrostatic global modeling but it is also required as part of the EMC 
support of the space weather prediction center (SWPC) of NCEP.  Thus, a nonhydrostatic 
and deep atmospheric global model should be considered, so that a global model can be 
used to support weather and climate for the lower and upper atmosphere and be coupled 
with other earth system models, such as ocean, ice, and space environment models. 
 
 In the literature, a deep-atmospheric nonhydrostatic system on generalized 
coordinates was given in Staniforth and Wood (2003), the same system with mass 
coordinates was illustrated in Wood and Staniforth (2003), and a similar system is used in 
the UK Met Office (Davies et al. 2005). However, we have different considerations, 
which may not be fully provided for us in the literature, and thus we have to research and 
derive our own system.  Instead of developing a totally new dynamics, the idea of 
incremental implementation is adopted.  The incremental changes will be added into the 
existing GFS code, to minimize the amount of software development involved.  The 
spectral transformation will be kept in the horizontal but the vertical discretization is 
changed. Since the deep-atmospheric nonhydrostatic dynamics are different from current 
hydrostatic system, a new discretization has to be done with appropriate conservation 
properties. The linearization of the equations for a semi-implicit time scheme in spectral 
space has to be constructed and all matrices related to linearized terms have to be redone. 
 
 In this note, the formulations of the deep-atmospheric nonhydrostatic dynamics in 
different vertical coordinates are presented in Section 2.  The conservation properties in 
generalized vertical coordinates are illustrated in Section 3.  The mass coordinates for the 
general concept of coordinate pressure from weight to determine a coordinate is 
introduced in Section 4.  Based on this coordinate pressure, prognostic equations are 
given and discretization equations are obtained with all conservation in finite difference 
form in Section 5.  The linearization for the semi-implicit scheme is illustrated in Section 
6.  The example of a semi-implicit semi-Lagrangian time scheme is given in Section 7, 
and a discussion of it is in Section 8.  Several appendices are given for help with the 
detailed derivations and easy coding into existing models, including examples of the base 
state for linearization, linearized matrices, and initial condition preparation from existing 
hydrostatic states. 
 
 
2.  Deep atmospheric nonhydrostatic system on spherical coordinates 
 
 The three dimensional momentum equations for a deep atmospheric 
nonhydrostatic system on horizontal spherical coordinates and vertical height coordinates 
can be found in text books, such as Haltiner and Williams (1979), and can be written as 
du
dt
−
uv tanφ

r
+
uw
r
− (2Ωsinφ)v+ (2Ωcosφ)w+ 1

ρ
1

rcosφ
∂ p
∂λ

#

$
%

&

'
(= Fu    (2.1a) 
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dv
dt
+
u2 tanφ

r
+
vw
r
+ (2Ωsinφ)u+ 1

ρ
1
r
∂ p
∂φ

"

#
$

%

&
'= Fv      (2.1b) 

dw
dt

−
u2 + v2

r
− (2Ωcosφ)u+ 1

ρ
∂ p
∂r

+ g = Fw       (2.1c) 

where all variables have the usual meaning, and the total derivative is 
dA
dt

=
∂A
∂t

+
u

rcosφ
∂A
∂λ

+
v
r
∂A
∂φ

+w∂A
∂r

       (2.2) 

three-dimensional winds are 

u = rcosφ dλ
dt

v = r dφ
dt

w = dr
dt

          (2.3) 

where r is the distance from earth center, λ and φ are longitude and latitude, and g is a 
function of r as in 

g = g a
2

r2
          (2.4) 

where g  is mean gravitational force at a , which is mean surface height, and r = a+ z . 
This deep atmospheric system can be simplified into a shallow atmospheric system by 
setting r = a  by Phillips (1966), which we used for current hydrostatic atmospheric 
models without considering a prognostic equation of vertical motion and its related 
Coriolis terms in horizontal momentum equations. 
 
 The related variables in the aforementioned momentum equations are pressure 
and density, and they are governed by the ideal gas law and continuity equation as 

p = pi
i=1

N

∑ = ρiRiT
i=1

N

∑ = ρ
ρiRi
ρi=1

N

∑
"

#
$

%

&
'T = ρ qiRi

i=1

N

∑
"

#
$

%

&
'T = ρRT     (2.5) 

∂ρ
∂t
+

1
rcosφ

∂
∂λ

ρu +
∂
∂φ

ρvcosφ
"

#
$

%

&
'+
1
r2

∂
∂r

ρr2w = Fρ     (2.6) 

where the sum of N individual constituent partial pressures results in a total pressure with 
a common temperature, the total density is a sum of densities of all constituents, and the 
total gas constant R is the sum of each constituent contribution weighted by the specific 
value. The continuity equation is suitable for each constituent and for the total densities. 
From the ideal gas law, we need a thermodynamic equation to govern temperature by an 
internal energy equation as 
∂ρe
∂t

+∇•ρeV + p∇•V = ρQ         (2.7) 

where e is the internal energy as in 

e = qiei
i=1

N

∑ = qiCVi
T =CVT

i=1

N

∑ = CP − R( )T = h− RT      (2.8) 
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Since we use the enthalpy h in our current NCEP GFS on a generalized hybrid 
coordinate, we will use enthalpy as a thermodynamic variable for consistency and 
backwards compatibility. After combining above two equations with the continuity 
equation, we have 
dh
dt
−
κh
p
dp
dt
=Q− h

ρ
Fρ          (2.9) 

where κ = R
CP

, then we divide h into Eq. (2.9), and we have 

d
dt
lnΘ( ) = Q

h
−
Fρ
ρ
− ln p

p0
dκ
dt  

       (2.10) 

where potential enthalpy 

Θ =
h
π
=

h
p / p0( )κκ

         (2.11) 

is conserved for an adiabatic system. 
 
 Then we apply a vertical coordinate conversion from the height coordinate to 
generalized vertical coordinates with all above prognostic variables, and we can group 
them as the following; 
du
dt
−
uv tanφ

r
+
uw
r
− fsv+ fcw + κh

p
1

rcosφ
 ∂ p
∂λ

−
∂ p
∂ζ

∂ζ
∂r

∂r
∂λ

"

#
$

%

&
'  = Fu    (2.12a) 

dv
dt

     + u
2 tanφ
r

+
vw
r

    + fsu            +
κh
p

1
r
 ∂ p
∂φ

−
∂ p
∂ζ

∂ζ
∂r

∂r
∂φ

"

#
$

%

&
'  = Fv    (2.12b) 

dw
dt

        − u
2 + v2

r
          − fcu                          +

κh
p
∂ p
∂ζ

∂ζ
∂r

+ g  = Fw    (2.12c) 

dh
dt
−
κh
p
dp
dt
= Fh          (2.12d) 

∂β
∂t
+
∂
∂λ

β λ
•

+
∂
∂φ

βφ
•

+
∂
∂ζ

βζ
•

= Fρ
β       (2.12e)  

dqi
dt

= Fqi           (2.12f) 

p = ρκh           (2.12g) 
where  
d()
dt

=
∂()
∂t

+λ
• ∂()
∂λ

+φ
• ∂()
∂φ

+ζ
• ∂()
∂ζ
         (2.13a) 

β = ρr2 cosφ ∂r
∂ζ

         (2.13b) 

w = ∂r
∂t
+λ

• ∂r
∂λ

+φ
• ∂r
∂φ

+ζ
• ∂r
∂ζ

        (2.13c) 

fs = 2Ωsinφ           (2.13d) 
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fc = 2Ωcosφ           (2.13e) 
The derivation to have β  in the continuity equation can be found in Staniforth and Wood 
(2003), with details in Appendix A of this note.  In their paper, they provided details of 
the derivation of all conservations: entropy, angular momentum, and total energy with 
mass conservation. 
 
 For programming our code, the equations have to change with spherical mapping 
by using virtual horizontal winds as  
du*

dt
+
u*w
r
    − fsv

*    + fc
*w               +κh

p
1
r
 ∂ p
∂λ

−
∂ p
∂ζ

∂ζ
∂r

∂r
∂λ

"

#
$

%

&
'      = Fu    (2.14a) 

dv*

dt
 + v

*w
r

     + fsu
*   +m2 s*2

r
sinφ   + κh

p
1
r
 ∂ p
∂ϕ

−
∂ p
∂ζ

∂ζ
∂r

∂r
∂ϕ

"

#
$

%

&
'      = Fv    (2.14b) 

dw
dt

 −m2 s*2

r
             −m2 fc

*u*           + κh
p
∂ p
∂ζ

∂ζ
∂r
                   +g  = Fw   (2.14c) 

dh
dt
−
κh
p
dp
dt
= Fh          (2.14d) 

∂ρ*

∂t
+m2 ∂

∂λ
ρ*
u*

r
"

#
$

%

&
'+m2 ∂

∂ϕ
ρ*
v*

r
"

#
$

%

&
'+

∂
∂ζ

ρ*ζ
•"

#
$

%
&
'= Fρ

*     (2.14e) 

dqi
dt

= Fqi           (2.14f) 

p = ρκh           (2.14g) 
where 
d()
dt

=
∂()
∂t

+
m2u*

r
∂()
∂λ

+
m2v*

r
∂()
∂ϕ

+ζ
• ∂()
∂ζ

=
∂()
∂t

+λ
• ∂()
∂λ

+ϕ
• ∂()
∂ϕ

+ζ
• ∂()
∂ζ

=
∂()
∂t

+λ
• ∂()
∂λ

+φ
• ∂()
∂φ

+ζ
• ∂()
∂ζ

=
∂()
∂t

+λ
• ∂()
∂λ

+µ
• ∂()
∂µ

+ζ
• ∂()
∂ζ

      (2.15a) 

Δϕ =mΔφ = Δφ
cosφ

         (2.15b) 

Δµ =
Δφ
m

= cosφΔφ          (2.15c)  

m =
1

cosφ
          (2.15d) 

u* = ucosφ           (2.15e) 
v* = vcosφ           (2.15f) 
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s*
2

= u*
2

+ v*
2

          (2.15g) 

ρ* = ρ
r2

a2
∂r
∂ζ
            (2.15h) 

fs = 2Ωsinφ             (2.15i) 
fc
* = 2Ωcos2φ            (2.15j) 

κ =
R
CP

            (2.15k) 

γ =
CP

CV

            (2.15l) 

Again, the continuity equation in Eq. (2.14e) is obtained by detailed derivation shown in 
Appendix A. 
 
 
3.  Conservation properties of a deep atmospheric nonhydrostatic system 
 
 The deep atmospheric nonhydrostatic system on horizontal spherical coordinates 
and a generalized vertical coordinate in Eq. (2.12) has multiple conservation properties. 
The related details can be found in Staniforth and Wood (2003). For completeness, a 
comprehensive derivation is provided here. 
 
 First, we can see from the continuity equation (2.12e), that mass is conserved 
when the force term is zero. Doing a global total integration of Eq. (2.12e), we have 

∂β
∂t
dζ dλ dφ

δ∫ +
∂β λ

•

∂λ
dζ dλ dφ

δ∫ +
∂βφ

•

∂φ
dζ dλ dφ

δ∫ +
∂βζ

•

∂ζ
dζ dλ dφ

δ∫ = 0  (3.1) 

it can be further separated into horizontal and vertical integrals as 
∂
∂t

β dζ
ζB

ζT∫ +
∂
∂λ

β λ
•

dζ
ζB

ζT∫ +
∂
∂φ

βφ
•

dζ
ζB

ζT∫
#

$
%

&

'
(dλ dφs∫

− βT
∂ζ
∂t
+λ

• ∂ζ
∂λ

+φ
• ∂ζ
∂φ

−ζ
•#

$
%

&

'
(
T

dλ dφ
S∫ + βB

∂ζ
∂t
+λ

• ∂ζ
∂λ

+φ
• ∂ζ
∂φ

−ζ
•#

$
%

&

'
(
B

dλ dφ
s∫ = 0

 (3.2) 

where the last two terms are the top and bottom boundary conditions which are zero, and 
the second and third terms in the first group vanish in the horizontal total integral. Thus, 
finally, we have 

∂
∂t
β dζ dλ dφ∫∫∫ =

∂
∂t

ρr2 cosφ ∂r
∂ζ

dζ dλ dφ∫∫∫ =
∂
∂t

ρ dv
V∫ = 0    (3.3) 

which indicates a conservation of total mass. Using the same step we can have entropy 
conservation by combining the following potential enthalpy equations 

dΘ
dt

=
∂Θ
∂t

+λ
• ∂Θ
∂λ

+φ
• ∂Θ
∂φ

+ζ
• ∂Θ
∂ζ

= 0        (3.4) 

with the continuity equation, Eq. (2.12e), to be 
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∂
∂t

βΘ( )+ ∂
∂λ

λ
•

βΘ
#
$
%

&
'
(+

∂
∂φ

φ
•

βΘ
#
$
%

&
'
(+

∂
∂ζ

ζ
•

βΘ
#
$
%

&
'
(= 0      (3.5) 

For the total global integral of the above, we have 
∂
∂t

βΘ dζ dλ dφ∫∫∫ =
∂
∂t

βΘdζ dλ dφ∫∫∫ =
∂
∂t

ρΘdv∫∫∫ = 0    (3.6) 

which indicates conservation of total mass weighted potential enthalpy. 
 
 Next, let’s check the behavior of the total integral of angular momentum. The 
angular momentum per unit mass can be defined as 

A = rcosφ u+Ωrcosφ( )         (3.7) 

So the total derivative of angular momentum is 
dA
dt

= rcosφ du
dt
+ u+ 2Ωrcosφ( ) d

dt
rcosφ

= rcosφ du
dt
+ u+ 2Ωrcosφ( ) wcosφ − vsinφ( )      (3.8)

 

puting the u momentum equation, Eq. (2.12a), into the above equation, we have  
dA
dt

= rcosφ Fu −
κh
p

1
rcosφ

 ∂ p
∂λ

−
∂ p
∂ζ

∂ζ
∂r

∂r
∂λ

"

#
$

%

&
'

(

)
*

+

,
-      (3.9) 

Again, combining with the continuity equation, we obtain 
∂
∂t

βA( )+ ∂
∂λ

uβA
rcosφ
!

"
#

$

%
&+

∂
∂φ

vβA
r

!

"
#

$

%
&+

∂
∂ζ

ζ
•

βA!
"
#

$
%
&

= βrcosφ Fu −
κh
p

1
rcosφ

 ∂ p
∂λ

−
∂ p
∂ζ

∂ζ
∂r

∂r
∂λ

!

"
#

$

%
&

)

*
+

,

-
.

= −r2 cosφ ∂r
∂ζ

∂ p
∂λ

+ r2 cosφ ∂ p
∂ζ

∂r
∂λ

+βrcosφFu

= −
∂
∂λ

pr2 cosφ ∂r
∂ζ

+ p ∂
∂λ

r2 cosφ ∂r
∂ζ

+
∂
∂ζ

pr2 cosφ ∂r
∂λ

− p ∂
∂ζ

r2 cosφ ∂r
∂λ

+βrcosφFu

    (3.10) 

where the second and fourth terms at right-hand-side (RHS) cancel each other due to 

∂r2 ∂r
∂ζ

∂λ
=
1
3

∂
∂r3

∂ζ
∂λ

=
1
3

∂
∂r3

∂λ
∂ζ

=
∂r2 ∂r

∂λ
∂ζ

       (3.10a) 

Thus, for the total integral of Eq. (3.10) with the above cancellation, we have 
∂
∂t

ρAdv∫∫∫ = ρrcosφFu dv∫∫∫ + p ∂r
∂λ

#

$
%

&

'
(
T

ds∫∫ − p ∂r
∂λ

#

$
%

&

'
(
B

ds∫∫    (3.11) 

which is zero under the condition of no source term, zero pressure at top of atmosphere,  
and no ground surface gradient. Thus it indicates that total integration of mass weighted 
angular momentum is governed by the ground surface torques.  
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 Next, let’s multiply Eq. (2.12a) by u, Eq. (2.12b) by v, and Eq. (2.12c) by w, and 
add them together, so we have the kinetic energy equation as 
∂K
∂t

+λ
• ∂K
∂λ

+φ
• ∂K
∂φ

+ζ
• ∂K
∂ζ

= −
1
ρ
λ
• ∂ p
∂λ

−
∂ p
∂ζ

∂ζ
∂r

∂r
∂λ

#

$
%

&

'
(−
1
ρ
φ
• ∂ p
∂φ

−
∂ p
∂ζ

∂ζ
∂r

∂r
∂φ

#

$
%

&

'
(−
1
ρ
w∂ p
∂ζ

∂ζ
∂r

− gw
   (3.12) 

where K =
1
2
u2 + v2 +w2( )  as kinetic energy. Combining it with the continuity equation 

we obtain 

∂
∂t

βK( )+ ∂
∂λ

λ
•

β K + p
ρ

"

#
$

%

&
'

"

#
$

%

&
'+

∂
∂φ

φ
•

β K + p
ρ

"

#
$

%

&
'

"

#
$

%

&
'+

∂
∂ζ

ζ
•

β K + p
ρ

"

#
$

%

&
'

"

#
$

%

&
'

= p ∂
∂λ

β
ρ
λ
•"

#
$

%

&
'+ p

∂
∂φ

β
ρ
φ
•"

#
$

%

&
'+ p

∂
∂ζ

β
ρ
ζ
•"

#
$

%

&
'−

∂
∂ζ

p β
ρ
∂r
∂t
∂ζ
∂r

"

#
$

%

&
'+ p

∂
∂ζ

β
ρ
∂r
∂t
∂ζ
∂r

"

#
$

%

&
'−βgw

= p ∂
∂λ

β
ρ
λ
•"

#
$

%

&
'+

∂
∂φ

β
ρ
φ
•"

#
$

%

&
'+

∂
∂ζ

β
ρ
ζ
•"

#
$

%

&
'

"

#
$

%

&
'−

∂
∂ζ

pr2 cosφ ∂r
∂t

"

#
$

%

&
'+ p

∂
∂ζ

r2 cosφ ∂r
∂t

"

#
$

%

&
'−βgw

= p ∂
∂t

β
ρ

+
∂
∂λ

β
ρ
λ
•

+
∂
∂φ

β
ρ
φ
•

+
∂
∂ζ

β
ρ
ζ
•"

#
$

%

&
'−

∂
∂ζ

pr2 cosφ ∂r
∂t

−βgw

 (3.13) 

For potential energy, we start from  

gw = dΦ
dr

dr
dt
=
∂Φ
∂t

+λ
• ∂Φ
∂λ

+φ
• ∂Φ
∂φ

+ζ
• ∂Φ
∂ζ

      (3.14) 

then combining with the continuity equation, we obtain 
∂
∂t

βΦ +
∂
∂λ

λ
•

βΦ +
∂
∂φ

φ
•

βΦ +
∂
∂ζ

ζ
•

βΦ = βgw     (3.15) 

Last, for thermodynamic energy, we start from the thermodynamic equation with the 
following variation as 
d
dt

CPT −
1
ρ
dp
dt
=
d
dt

CVT +
d
dt

RT −
1
ρ
dp
dt
=
d
dt

CVT + p d
dt

1
ρ

= 0   (3.16) 

Again, combining with the continuity equation, we have 
∂
∂t

βCVT +
∂
∂λ

λ
•

βCVT +
∂
∂φ

φ
•

βCVT +
∂
∂ζ

ζ
•

βCVT

= −p ∂
∂t

β
ρ

#

$
%

&

'
(+

∂
∂λ

λ
• β
ρ

#

$
%

&

'
(+

∂
∂φ

φ
• β
ρ

#

$
%

&

'
(+

∂
∂ζ

ζ
• β
ρ

#

$
%

&

'
(

)

*
+

,

-
.

    (3.17) 

Summing Eqs. (3.13), (3.15) and (3.17), and integrating globally, we obtain 
∂
∂t

β K +Φ+CVT( )dλ dφ dζ∫∫∫ =
∂
∂t

ρ K +Φ+CVT( )dv∫∫∫ = 0    (3.18) 

with a top boundary condition of zero pressure and the bottom boundary condition of 
zero local change of terrain at the ground surface.  As mentioned previously, we 
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paraphrase all conservation properties here in this note, otherwise, you can find a detailed 
derivation in Staniforth and Wood (2003).  The most tricky or tedious derivation is to 
convert the density equation in z to a generalized vertical coordinate, in which we use ρ  

in z coordinate but β = ρr2 cosφ ∂r
∂ζ

 for the continuity equation in generalized 

coordinates, and ρ* = ρ r
2

a2
∂r
∂ζ

for spherical mapping and the generalized vertical 

coordinate. The detailed derivation of these three conversions in the density equation can 
be found in Appendix A. 
 
 
4.  Mass coordinates by coordinate pressure 
 
 Before we do a discretization, we would like to do incremental changes to the 
vertical grid, which is similar to our existing grid system in Fig. 1. All the indices are 
integers to make them easy to follow and code into a model.  The variables at model 
levels are noted with a hat, and variables without a hat are in model layers.  
 
 Continuity is used for constructing mass coordinates for most mass based vertical 
coordinates. There are several ways to make mass coordinates, such as Laprise (1992), 
Juang (1992, 2000) for nonhydrostatic systems, and Staniforth and Wood (2003) and 
Wood and Staniforth (2003) for deep atmosphere nonhydrostatic systems. Again, 
considering incremental changes, we will give a concept to construct mass coordinates 
similar to a hydrostatic system in the continuity equation. The general concept of 
measured mean pressure at any given location in the vertical sense is the weight on top of 
the location divided by the area at the given location. Let’s give a mass above any given 
level as 

Mass = ρr2 cosφ ∂r
∂ζ

dζ dλ dφ
ζ

ζTOP∫λ1

λ2∫φ1

φ2∫       (4.1) 

then project this mass on earth radius surface as the following 

Mass g
a2 cosφ dλ dφ

λ1

λ2∫φ1

φ2∫
=

ρg r
2

a2
∂r
∂ζ

dζ cosφ dλ dφ
ζ

ζTOP∫λ1

λ2∫φ1

φ2∫
cosφ dλ dφ

λ1

λ2∫φ1

φ2∫
   (4.2) 

which can be deduced to be a pressure-alike variable called a coordinate pressure as    

!pζ = ρg r
2

a2
∂r
∂ζ

dζ
ζ

ζTOP∫         (4.3) 

Then let the coordinate pressure at top be zero, we have 

!pζ = −
∂!p
∂ζ

dζ
ζ

ζTOP∫          (4.4)  

thus, we get the following coordinate relationship from Eqs. (4.3) and (4.4) as 

∂!p
∂ζ

= −ρg r
2

a2
∂r
∂ζ

= −ρ*g         (4.5) 
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which is similar to the hydrostatic relationship in a hydrostatic system. 
 
 From our current generalized hybrid coordinate system for the continuity 
equation, Eq. (4.5) has a form similar to the hydrostatic equation as mentioned. In this 
way, the density in Eq. (2.14e) can be replaced by coordinate pressure gradient, which 
defines the density with a constant gravitational force as 

∂
∂t

∂!p
∂ζ

"

#
$

%

&
'+m2 ∂

∂λ
∂!p
∂ζ

u*

r
"

#
$

%

&
'+

∂
∂ϕ

∂!p
∂ζ

v*

r
"

#
$

%

&
'

"

#
$

%

&
'+

∂
∂ζ

∂!p
∂ζ

ζ
•"

#
$

%

&
'= 0     (4.6) 

and it can be further discretized as the following form 

∂Δ!pk
∂t

+m2 ∂
∂λ

u*Δ!p
r

#

$
%

&

'
(+

∂
∂ϕ

v*Δ!p
r

#

$
%

&

'
(

#

$
%

&

'
(
k

+ ζ
• ∂!p
∂ζ

#

$
%

&

'
(
k

Λ

− ζ
• ∂!p
∂ζ

#

$
%

&

'
(

Λ

k+1

= 0    (4.7) 

where  Δ!pk = !̂pk − !̂pk+1 , and summed from top of model to any given layer as 

∂ !̂pk
∂t

+ m2 ∂
∂λ

ui
*Δ!pi
ri

#

$
%

&

'
(+

∂
∂ϕ

vi
*Δ!pi
ri

#

$
%

&

'
(

#

$
%%

&

'
((

i=k

K

∑ +
∂!p
∂ζ

ζ
•#

$
%

&

'
(

Λ

k

= 0      (4.8) 

or totally summed to the ground as 
∂ !̂ps
∂t

+ m2 ∂
∂λ

ui
*Δ!pi
ri

#

$
%

&

'
(+

∂
∂ϕ

vi
*Δ!pi
ri

#

$
%

&

'
(

#

$
%%

&

'
((

i=1

K

∑ = 0       (4.9) 

or in total derivative form for a semi-Lagrangian scheme as 

dh
dht

Δ!pk +m
2Δ!pk

∂
∂λ

u*

r
"

#
$

%

&
'+

∂
∂ϕ

v*

r
"

#
$

%

&
'

"

#
$

%

&
'
k

+ ζ
• ∂!p
∂ζ

"

#
$

%

&
'
k

Λ

− ζ
• ∂!p
∂ζ

"

#
$

%

&
'

Λ

k+1

= 0    (4.10) 

and summed from top of model to the ground as 

D !̂ps
Dt

+ m2Δ!pi
∂
∂λ

ui
*

ri

"

#
$

%

&
'+

∂
∂ϕ

vi
*

ri

"

#
$

%

&
'

"

#
$$

%

&
''

i=1

K

∑ = 0       (4.11) 

where 
dh
dht

Δ!pk( ) = ∂
∂t

Δ!pk( )+m2 u*

r
∂Δ!p
∂λ

+
v*

r
∂Δ!p
∂ϕ

#

$
%

&

'
(
kk

      (4.12) 

and 
D !̂ps
Dt

=
∂ !̂ps
∂t

+ m2 ui
*

ri
∂
∂λ

+
vi
*

ri
∂
∂ϕ

"

#
$

%

&
'Δ!pi

i=1

K

∑       (4.13) 

 
 Let’s return to the coordinate pressure definition and replace density with the 
ideal gas relationship, then we have the following form for a vertical coordinate 
relationship with coordinate pressure definition as 
∂r
∂ζ

= −
κh
pg

a2

r2
∂p
∂ζ

         (4.14) 
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which can be used to replace all coordinate terms related to the pressure gradients of 
momentum equations.  Put all r’s into left hand side and apply derivative then do a 
discretization so we have a relationship between coordinate pressure and height as  

r̂3k+1 = r̂
3
k +3

κh
pg

!

"
#

$

%
&
k

a2 ̂pk − ̂pk+1( )        (4.15) 

This becomes the diagnostic equation for height. Going back to Fig. 1, all prognostic 
variables are in model layers, such as the three dimensional momentum, enthalpy, and 
pressure. And coordinate pressure and model level height are defined by the continuity 
equation and mass coordinate definition here. The constraint relationship to use on model 
layer heights from model levels in Eq. (4.15) has to be determined by the conservation 
requirement as in the following section. 
 
 
5.  Vertical discretization based on multiple conservations 
 
 In this section, we will use the mass conservation through coordinate pressure 
discussed in the previous section to do further discretization of all equations based on 
multi-conserving properties of angular momentum, total energy, and entropy (potential 
enthalpy) .   
 
5.1 Angular momentum considerations 
 
 First, we start from angular momentum, which is given in Section 3, Eq. (3.7), 
and its total derivative without the source term is given as 

dA
dt

= −
κh
p

 ∂ p
∂λ

−
∂ p
∂ζ

∂ζ
∂r

∂r
∂λ

"

#
$

%

&
'         (5.1) 

where we use A as its definition with u, not u* in Eq. (3.8), and we expand the total 
derivative with m in the advection term as 

∂A
∂t
+m2 u*

r
∂A
∂λ

+
v*

r
∂A
∂ϕ

"

#
$

%

&
'+ζ

• ∂A
∂ζ

= −
κh
p

 ∂ p
∂λ

−
∂ p
∂ζ

∂ζ
∂r

∂r
∂λ

"

#
$

%

&
'     (5.2) 

combining it with the continuity equation in the previous section’s Eq. (4.6), we have 

∂
∂t

∂!p
∂ζ

A
"

#
$

%

&
'+m2 ∂

∂λ
∂!p
∂ζ

u*

r
A

"

#
$

%

&
'+

∂
∂ϕ

∂!p
∂ζ

v*

r
A

"

#
$

%

&
'

"

#
$

%

&
'+

∂
∂ζ

∂!p
∂ζ

ζA
•"

#
$

%

&
'

= −
∂!p
∂ζ

κh
p

 ∂ p
∂λ

−
∂ p
∂ζ

∂ζ
∂r

∂r
∂λ

"

#
$

%

&
'

    (5.3) 

After globally integrating the above equation, we will obtain a global mass weighted 
angular momentum change. In other words, left-hand-side (LHS) of Eq. (5.3) retains only 
the local change and RHS of Eq. (5.3) retains only the ground surface pressure gradient 
with surface height.  Thus, after vertically integrating the RHS of Eq. (5.3) with 
coordinate pressure definition, we have 
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∂p
∂ζ

κh
p

∂ p
∂λ

−
∂ p
∂ζ

∂ζ
∂r

∂r
∂λ

#

$
%

&

'
(dζ

ζS

ζT

∫ =  ∂
p

∂ζ
κh
p
∂ p
∂λ

−
∂p
∂ζ

κh
p
∂ p
∂ζ

∂ζ
∂r

∂r
∂λ

#

$
%

&

'
(dζ

ζS

ζT

∫

=  − ∂r
∂ζ

gr2

a2
∂ p
∂λ

+
gr2

a2
∂ p
∂ζ

∂r
∂λ

#

$
%

&

'
(dζ

ζS

ζT

∫

=  g
3a2 −

∂r3

∂ζ
∂ p
∂λ

+
∂ p
∂ζ

∂r3

∂λ

#

$
%

&

'
(dζ

ζS

ζT

∫

  (5.4) 

then we apply a derivative by chain rule, and alter the sequence of derivatives to a single 
variable, and the right hand side becomes 

 g
3a2 −

∂r3

∂ζ
∂ p
∂λ

+
∂
∂λ

r3 ∂ p
∂ζ

"

#
$

%

&
'− r3 ∂

∂λ
∂ p
∂ζ

"

#
$

%

&
'

"

#
$

%

&
'dζ

ζS

ζT

∫ =

                        ∂
∂λ

 g
3a2 r

3 ∂ p
∂ζ

dζ
ζS

ζT

∫
"

#
$$

%

&
''−

grT
3

3a2
∂ pT
∂λ

+
grS

3

3a2
∂ pS
∂λ

    (5.5) 

When globally integrating of LHS and RHS in the above equation with pressure at the 
top level either constant or zero, we have 

r̂3k+1 − r̂
3
k( )∂ pk
∂λ

+ rk
3 ∂ p̂k+1

∂λ
−
∂ p̂k
∂λ

"

#
$

%

&
'

(

)
*

+

,
-

k=1

K

∑ = −r̂S
3 ∂ pS
∂λ

     (5.6) 

let pk = f p̂k+1, p̂k( ) ,  so pk =
∂fk
∂p̂k+1

p̂k+1 +
∂fk
∂p̂k

p̂k and ∂fk
∂p̂k+1

+
∂fk
∂p̂k

=1 . Put these relations into 

above equation and expand it as 

r̂3K+1 − r̂
3
K( ) ∂ fK
∂ p̂K+1

+ rK
3 ∂ p̂K+1

∂λ
+ r̂3K+1 − r̂

3
K( ) ∂ fK
∂ p̂K

− rK
3 ∂ p̂K

∂λ

+ r̂3K − r̂
3
K−1( )∂ fK−1

∂ p̂K
+ rK−1

3 ∂ p̂K
∂λ

+ r̂3K − r̂
3
K−1( ) ∂ fK−1

∂ p̂K−1
− rK−1

3 ∂ p̂K−1
∂λ

+......

+ r̂32 − r̂
3
1( ) ∂ f1
∂ p̂2

+ r1
3 ∂ p̂2
∂λ

+ r̂32 − r̂
3
1( ) ∂ f1
∂ p̂1

− r1
3 ∂ p̂1
∂λ

= −r̂S
3 ∂ pS
∂λ

= −r̂1
3 ∂ p̂1
∂λ

  (5.7) 

This will be always true if each group of coefficients at the same level of pressure 
derivative is zero. Thus, we get 

r̂3k+1 − r̂
3
k( ) ∂ fk
∂ p̂k

− rk
3 + r̂3k − r̂

3
k−1( )∂ fk−1

∂ p̂k
+ rk−1

3 = 0      (5.8) 

r̂32 − r̂
3
1( ) ∂ f1
∂ p̂1

− r1
3 = −r̂1

3         (5.9) 

with pressure at the top level as a zero derivative. 
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 For simplicity we can let ∂fk
∂p̂k+1

=
∂fk
∂p̂k

=
1
2

as in the hydrostatic system, so p at a 

model layer is the mean of its neighboring pressures at model levels. Then we get 
relationship for heights between layer and its neighboring levels as 

rk
3 =
1
2
r̂3k+1 +

1
2
r̂k
3          (5.10) 

Based on this relationship and the relationship for heights at model levels Eq. (4.15), we 
can use another way to describe the relationship between height at model levels and 
model layers as 

rk
3 = r̂3k +

3a2

2g
κh
p

!

"
#

$

%
&
k

̂pk − ̂pk+1( )         (5.11) 

We can use Eq. (4.15) to have model level height as a summation from ground level up to 
any given model level as 

r̂k
3 = r̂31 +3

a2

g
κ ihi
̂pi − ̂pi+1
pi

"

#
$
$

%

&
'
'i=1

k−1

∑         (5.12) 

and the relationships in Eqs. (5.10) and (5.11) have model layer height as the summation 
from ground level up to any given model layer as 

rk
3 = r̂31 +3

a2

g
κ ihi
̂pi − ̂pi+1
pi

"

#
$
$

%

&
'
'i=1

k−1

∑ +
3
2
a2

g
κkhk

̂pk − ̂pk+1
pk

     (5.13) 

Thus, the pressure gradient in the latitudinal momentum equation can be written as 

κh
p

1
r
 ∂ p
∂λ

−
∂ p
∂ζ

∂ζ
∂r

∂r
∂λ

"

#
$

%

&
'

(

)
*

+

,
-
k

=
κkhk
pk

a
rk
∂ pk
a∂λ

+
rk

2

a2
p̂k − p̂k+1

!̂pk − !̂pk+1

a
rk
g∂rk
a∂λ

=
κkhk
pk

a
rk
∂ pk
a∂λ

+
1

3a2
p̂k − p̂k+1

!̂pk − !̂pk+1

a
rk
g∂rk

3

a∂λ

   (5.14a) 

then we put Eq. (5.13) into last terms of Eq. (5.14a), we have  

p̂k − p̂k+1
!̂pk − !̂pk+1

g
3a2

a
rk
∂rk

3

a∂λ
=
p̂k − p̂k+1
!̂pk − !̂pk+1

g
3a2

a
rk
∂ r̂31
a∂λ

"
#
$

+
a
rk

1
2
!̂pk − !̂pk+1
pk

∂
a∂λ

κkhk( )+
!̂pi − !̂pi+1
pi

∂
a∂λ

κ ihi( )
i=1

k−1

∑

+
a
rk
1
2
κkhk
pk

∂
a∂λ

!̂pk − !̂pk+1( )+ κ ihi
pi

∂
a∂λ

!̂pi − !̂pi+1( )
i=1

k−1

∑

−
a
rk

κkhk
1
2
!̂pk − !̂pk+1
pk
2

∂ pk
a∂λ

+ κ ihi
!̂pi − !̂pi+1
pi
2

∂ pi
a∂λi=1

k−1

∑
&
'
(

)(

  (5.14) 

where λ can be replaced byϕ  for longitudinal momentum, and
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∂κh
∂λ

=κ
∂h
∂λ

+ h∂κ
∂λ

=
R
CP

∂h
∂λ

+ h
CP

∂R
∂λ

− R∂CP

∂λ
CP
2

=
R
CP

∂h
∂λ

+ h
CP Ri

∂qi
∂λi=1

N

∑ − R CPi
∂qi
∂λi=1

N

∑
CP
2

      (5.15) 

In the case of a semi-Lagrangian model with tracers only in grid point space, the 
derivatives of specific tracers are not available.  To save on spectral transforms without 
spectral transformation for N tracers, we will compute r (height) at a model layer by Eqs. 
(5.10) and (5.12), doing spectral derivatives in r for the momentum equations as follows 
duk

*

dt
= −

uk
*wk

rk
    + fsvk

*    − fc
*wk              −

κkhk
pk

a
rk
∂ pk
a∂λ

−
g
3a2

p̂k − p̂k+1
̂pk − ̂pk+1

a
rk
∂r3k
a∂λ

  (5.16a) 

dvk
*

dt
 = − vk

*wk

rk
     − fsuk

*   −m2 sk
*2

rk
sinφ   − κkhk

pk
a
rk
∂ pk
a∂ϕ

−
g

3a2
p̂k − p̂k+1

̂pk − ̂pk+1

a
rk
∂r3

k

a∂ϕ
  (5.16b) 

 
5.2 Total energy conservation 
 
 Next, let’s check into total energy conservation. From Section 3, we know that the 
energy conversion term exists in the kinetic energy equation as well as the 
thermodynamic equation. And we concluded that conservation is valid while the energy 
conversion term used in the kinetic energy equation applies to the thermodynamic energy 
equation. This is true in the hydrostatic system shown in Juang (2005) and (2011) except 
the conservation in the deep atmospheric nonhydrostatic system required three-
dimensional advection of the pressure gradient instead of only horizontal advection, as 

−
∂p
∂ζ

m2u* κh
p

1
r
∂ p
∂λ

−
∂ p
∂ζ

∂ζ
∂r

∂r
∂λ

#

$
%

&

'
(+m2v* κh

p
1
r
∂ p
∂ϕ

−
∂ p
∂ζ

∂ζ
∂r

∂r
∂ϕ

#

$
%

&

'
(+w

κh
p
∂ p
∂ζ

∂ζ
∂r

)

*
+

,

-
.

= −
∂p
∂ζ

κh
p
λ
• ∂ p
∂λ

−
∂ p
∂ζ

∂ζ
∂r

∂r
∂λ

#

$
%

&

'
(−

∂p
∂ζ

κh
p
µ
•

 ∂ p
∂µ

−
∂ p
∂ζ

∂ζ
∂r

∂r
∂µ

#

$
%

&

'
(−

∂p
∂ζ

wκh
p
∂ p
∂ζ

∂ζ
∂r

 (5.17) 

We useµ here, as an easy way to absorb mapping factor m into the operators, so we can 
use the following local symbolic derivative definitions to simplify the derivation later in 
this subsection as 

λ
• ∂A
∂λ

+µ
•

 ∂A
∂µ

=VH •∇A 

∂ λ
•

A
∂λ

+ ∂µ
•

A
∂µ

=∇• VHA( )
        (5.18) 

Don’t confuse this local gradient here from the other definition. 
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 Thus, Eq. (5.17) can be rewritten, performing the chain rule, and expanding w by 
the total derivative of r as follows 

−
∂p
∂ζ

κh
p
VH •∇H p+

∂p
∂ζ

κh
p
∂ p
∂ζ

∂ζ
∂r
VH •∇Hr −
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∂ζ

κh
p
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(
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∂p
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p
∂ p
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VH •∇Hr −
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(
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∂ p
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∂r

   (5.19a) 

then the horizontal advection of r in the last two terms will be cancelled out with the 
remaining 

= −∇H • p ∂
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p
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&
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(
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•

  (5.19b) 

The first term will be zero after global integral, and the last two terms can be expanded 
by the chain rule for vertical derivatives on p as 
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 (5.20) 

and the second term in RHS can be manipulated as 

p ∂
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'   (5.21)  

Then we deal with the three terms with p; the first is Eq. (5.21) which is the second term 
in Eq. (5.20), and next, the last term in Eq. (5.20), and last, the second term in Eq. 
(5.19b), so that we obtain 
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∂ζ

κh
p

"

#
$

%

&
'+ p∇H •

∂p
∂ζ

κh
p
VH

"

#
$

%

&
'+ p

∂
∂ζ

∂p
∂ζ

κh
p
ζ
•"

#
$

%

&
'

= pκh
p

∂
∂t

∂p
∂ζ

"

#
$

%

&
'+∇H •

∂p
∂ζ

VH
"

#
$

%

&
'+

∂
∂ζ

∂p
∂ζ

ζ
•"

#
$

%

&
'

)

*
+

,

-
.+ p

∂p
∂ζ

d
dt

κh
p

"

#
$

%

&
'

)

*
+

,

-
.

= p ∂
p

∂ζ
1
p2

p dκh
dt

−κh dp
dt

"

#
$

%

&
'= −

1
γ
∂p
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κh
p
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   (5.22) 

In summary, Eq. (5.17) can be equal to Eq. (5.19b) and equal to the following after 
applying Eqs. (5.20), (5.21) and (5.22) as 

= −∇H • p ∂
p
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  (5.19c) 

Finally, we have the energy conversion term. When we select from Eq. (5.19a) and Eq. 
(5.19c) with w term recovered, we have 
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   (5.23a) 

with further manipulation, we have 
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after some manipulations, then we do a discretization as 
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  (5.24) 

where  

w = r
2

a2
w           (5.25) 

is a height-weighted vertical velocity. Finally, when we recover the local symbolic 
gradients back to their usual form, we have 

dp
dt

!

"
#

$

%
&
k

= −γ k pk m2 ∂
∂λ

u*

r
!

"
#

$

%
&+

∂
∂ϕ

v*

r
!

"
#

$

%
&

!

"
#

$

%
&
k

)
*
+

,+

−m2

uk−1
*

rk−1
−
uk
*

rk

!

"
#

$

%
&
∂r̂k

3

∂λ
+
uk
*

rk
−
uk+1
*

rk+1

!

"
#

$

%
&
∂r̂k+1

3

∂λ
+
vk−1
*

rk−1
−
vk
*

rk

!

"
#

$

%
&
∂r̂k

3

∂ϕ
+
vk
*

rk
−
vk+1
*

rk+1

!

"
#

$

%
&
∂r̂k+1

3

∂ϕ

2Δr3

+
a2

r2
Δ !w
Δr

!

"
#

$

%
&
k

.
/
+

0+

 (5.26) 

using the above discretization, which is obtained from kinetic equation, with the 
thermodynamic equation will ensure total energy conservation. 
 
5.3 Considering potential enthalpy conservation 
 
 Since we are using enthalpy as a prognostic equation, the potential enthalpy 
conservation, see Eqs. (2.10) and (2.11) in section 2, has to be considered which can be 
written in logarithmic form as 
1
Θ
dΘ
dt

=
d
dt
lnΘ( ) = 0          (5.27) 

Combining with continuity equation we have 
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$
%

&

'
(= 0

  
(5.28) 

Since horizontal is spectral computation, we do vertical discretization by equaling two 
vertical terms before combination and after combination as 
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(      (5.29) 

So vertical advection can be discretized, see Juang (2005, 2011) for details, as following 

ζ
• ∂
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#

$
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(
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=
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ζ
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%
%

&

'

(
(
k+1

   ( 5.30) 

And it is the same for any variable in terms of no forcing in mass weighted advection. 
Since h =Θπ , so lnh = lnΘ+ lnπ  is a linear computation. Next let’s start from Eqs. 
(2.9), (2.10), and (2.11), with conservation in terms of no external forcing as Q=0 and 
dκ
dt

= 0 , so the thermodynamic equation can be 

dh
dt
=
∂
∂t

Θπ( )+m2
!
V •∇ Θπ( )+ζ

• ∂h
∂ζ

=
κh
p
dh
dt

      (5.31) 

Then we expand the equation into potential enthalpy, pressure and kappa, then apply total 
derivatives of potential enthalpy and kappa are zero, we have  

−π ζ
• ∂Θ
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− h ln p
p0
ζ
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(
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,
-

.

/
0+ζ

• ∂h
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κh
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  (5.32) 

Move all terms at LHS except vertical advection of h to RHS, expand total derivative of p 
into logorithms of p, then we obtain the equation for vertical advection of h as 

ζ
• ∂h
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= hζ
• ∂
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lnΘ( )+ h ln p
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(5.32)

 
Then we discretize the vertical advections in LHS by the same form as Eq. (5.30), so the 
vertical advection of h can be 
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(5.33)

 
for a Eulerian system to conserve potential enthalpy.  
 
 If it is in a dimensional-split semi-Lagrangian system, Eq. (5.33) can be rewritten 
with further discretization as 
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,

-,

.
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,

0,
 (5.34) 

where δ =1, it indicates that we can apply the flux form semi-Lagrangian advections with 
a correction of the unit flux form semi-Lagrangian advection.  Thus, to have potential 
enthalpy conservation, we need do vertical flux form semi-Lagrangian advections of 
logarithms of potential enthalpy, kappa, logarithms of pressure, and a unit value. For 
three-dimensional advection, to have conservation in advection may requires three 
dimensional flux form semi-Lagrangian advection. 
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5.4 Coordinate vertical velocity  
  
 From the height-weighted coordinate vertical velocity in Eq. (5.25), we can have 
the vertical momentum equation use a height-weighted coordinate vertical velocity. Let’s 
start with the vertical momentum equation (2.14c) and apply Eq. (4.5), then we have 
dw
dt

 =m2 s*2

r
 +m2 fc

*u* −
κh
p
∂ p
∂ζ

∂ζ
∂r

− g 

≅m2 s*2

r
 +m2 fc

*u* + g r
2Δp
a2Δp

− g  
      (5.35) 

Then the total derivative of height-weighted coordinate vertical velocity will be 
d w
dt

=
r2

a2
dw
dt

+ 2w r
a2
dr
dt

= 2a2 w2

r3 +m
2 r
a2 s

*2

 +m2 r2

a2 fc
*u* + g r4Δp

a4Δp
−1

#

$
%

&

'
(

     (5.36) 

Furthermore, do a total derivative of Eq. (5.10) so we have 

rk
2wk =

1
2
r̂ 2k+1ŵk+1 +

1
2
r̂ 2kŵk

wk =
1
2
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1
2
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        (5.37) 

with the bottom boundary condition as 
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"
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%
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        (5.38)  

Though our prognostic equation for vertical velocity is at model layers, we need it to be 
at model levels for computation of the thermodynamic equation. We get vertical motion 
at model levels by Eqs. (5.38) and (5.37) for vertical motion at model layers.  
 
6.  Linearization for semi-implicit scheme 
 
 From the previous section, we can have all discretized prognostic equations 
linearized, so that we can use the semi-implicit form in wave space. The linearization can 
be done along a base state, which is defined and obtained in Appendix B.  
 
6.1 generalized linear equations 
 
 First, we look at the horizontal momentum equations (2.14), which have linear 
terms from the pressure gradient force in Eq. (5.14) as 



 19 
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these can be combined into divergence and vorticity as 
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where 
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         (6.3b) 

which are the same definition as in hydrostatic system. So we can use existing spectral 
transform routines with divergence and vorticity computation as in the shallow 
atmosphere for computation of Eq. (6.3) here. 
  
 Before we can further linearize the vertical momentum and thermodynamics 
equations, we found they have vertical differences of pressure and vertical velocity in the 
linear forcing. The vertical differences of pressure and vertical velocity at a model layer 
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are the differences between the two neighboring levels. Since all linearized terms are 
computed at the model layers, we have to make the differences of pressure and vertical 
velocity from model level be represented by themselves at the model layer. To do so, 
let’s start with the relationship between levels and layers for pressure first. From 

Δpk = p̂k − p̂k+1and pk =
1
2
p̂k + p̂k+1( ) , we get that any given pressure at a model layer is 

given by 
 

pk = Δpi
i=K
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∑ +
1
2
Δpk = ΡkiΔpi         (6.4)

 
the same for vertical velocity with 

wk = ̂w1 + Δ wi
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So that we can have differences with the inverse of matrices P and W as 
Δpk = Ρki

−1pi           (6.6) 

Δ wk =Wki
−1 wi − ̂w1( )          (6.7) 

In this case, all vertical differencing at two neighboring model levels can be represented 
by a matrix summation of its value at the model layers.  Thus, the vertical momentum 
equation, Eq. (5.36), can be linearized as 
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       (6.8) 

And the pressure and the thermodynamic equations, see Eq. (5.26), can be linearized as 
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 Then, the remaining equation is the continuity equation. Since we are going to use 
a semi-Lagrangian scheme, let’s have the total derivative as follows for linearization 

   (6.11) 

For a specific coordinate, we may be able to linearize the vertical fluxes, last two terms in 
the above equation, but for generalization and simplicity, we do divergence only here, 
and do the rest in the next section as 
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Thus, we have linearized equations, Eqs. (6.2), (6.8), (6.9), (6.10) and (6.12), a for semi-
implicit time integration scheme. 
 
6.2 Linearization along sigma-pressure coordinates 
 
 For a backward comparison similar to the hydrostatic system, and from Eq. (4.5) 
we know that the coordinate pressure is monotonic, thus, we can use it for the vertical 
coordinate by predefining it as  
̂pk = Âk + B̂k ̂ps           (6.13) 

Thus, the previous generalized linearized equations will turn into following 
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with a total vertical summation of all layers for Eq. (6.11), we have 
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and the linearized form is 
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is the total vertical contribution of advection to the surface coordinate pressure. Thus, for 
the linearization along a sigma-pressure coordinate, we need Eqs. (6.14), (6.15), and 
(6.17), which change into using coordinate surface pressure, and Eqs. (6.9) and (6.10) to 
be completed. 
 
 
7.  Applying a SETTLS scheme for semi-implicit and semi-Lagrangian time 
integration 
 
 There are several semi-implicit and semi-Lagrangian time integration schemes in 
the literature. Since we have a SETTLS scheme in the NCEP GSM code, we can derive 
the solution of the semi-implicit and semi-Lagrangian methods along the lines of a 
SETTLS scheme, however, the manipulation and final computation sequences in this 
section can be used for any time scheme. 
 
 First, let’s introduce the formula of the SETTLS scheme. It can be found in Hortel 
(1999), and we give details here. Any location along the advection can be expanded by a 
Taylor series as 
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where the second term on the RHS can be replaced by df
dt

 along the velocity of u = Δx
δt

, 

and the third term can be approximated to d
2 f
dt2
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2
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     (7.2) 

 
Based on this approximation, we can summarize the advection with the following 

xA
n+1 ≈ xD

n +δtVM
n+1
2

≈ xD
n +δt VA

n + 2VD
n −VD

n−1

2

        (7.3) 
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which determines the location of the departure and arrival locations with velocities at the 
departure and arrival locations for current and past times. Any total derivative of all 
prognostic variables and their associated Lagrangian forcing (source terms) can be the 
same as x and V, respectively. Thus, any given prognostic equation can be illustrated as 
follows for this forcing method.  For any given prognostic equation we have 
dA
dt

= F = L + N          (7.4) 

where A is any prognostic variable, F is its Lagrangian forcing which can be separated 
into linear terms L and nonlinear terms N. So the semi-Lagrangian scheme can be written 
and expanded by the above scheme as 

AA
n+1 = AD

n +δt F − L( )M
n+1
2 +δtL

= AD
n +δt αLA

n+1 + (1−α)LD
n − LM

n+1
2

"

#
$

%

&
'+δtFM

n+1
2

= AD
n +δt αLA

n+1 + (1−α)LD
n −αLA

n − (1−α)LD
n+1( )+δt FA

n +FD
n+1

2

= AD
n +δt α LA

n+1 − LA
n − (1−α) LD

n − LD
n−1( )+δt FA

n + 2FD
n −FD

n−1

2

   (7.5) 

where an un-centered option is used for the linear terms by 𝛼. With rearrangement to 
group departure and arrival terms together and put the unknown term onto the LHS of Eq. 
(7.5), we have 

δAA
n+1 −αδtδLA

n+1 = AD
n − (1−α)δt LD

n − LD
n−1( )+δt 2FD

n −FD
n−1

2
+δt FA

n

2
− AA

n = SA
n   (7.6) 

where 
δAA

n+1 = AA
n+1 − AA

n          (7.7a) 
δLA

n+1 = LA
n+1 − LA

n          (7.7b) 
 
 Then we can apply Eq. (7.6) to all prognostic equations with linear equations 
from Eqs. (6.14), (6.15), (6.10), (6.9) and (6.17), respectively, as follows: 

δDk
* −

n(n+1)
a2

αδt Αkiδpi +Βkiδhi + e0kδ ps( ) = SD*      (7.8a) 

δ wk +αδt b0kδ ps −Γkiδpi( ) = S wk        (7.8b) 

δhk +αδt f0kδDk
* −Ζkiδ wi( ) = Shk        (7.8c) 

δpk +αδt d0kδDk
* −Μkiδ wi( ) = Spk        (7.8d) 

δ ps +αδtΠ1iδDi
* = S ps          (7.8e) 

where all S terms are computed following Eq. (7.6) by semi-Lagrangian advection 
through the SETTLS scheme. All matrices in Eq. (7.8) for a given layer are 

Αki = 
κ0kh0k
ε0k p0k

−
Δp0k
Δp0k

1
ε0k

κ0kh0k
Δp0k
2p0k

2 + κ0ih0i
Δp0i
p0i
2

i=1

k−1

∑     (7.9a) 
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Βki =
Δp0k
Δp0k

1
ε0k

κ0kΔp0k
2p0k

+
κ0iΔp0i
p0ii=1

k−1

∑       (7.9b) 

Γki =
gε0k

4

Δp0k
Ρki
−1           (7.9c) 

Zki =
γ0kgp0k
Δp0k

Wki
−1          (7.9d) 

Μki =
γ0kgp0k

2

κ0kh0kΔp0k
Ρki
−1          (7.9e) 

and the vector in Eq. (7.8e) is 

Π1i =
Δp0i
ε0ii=1

K

∑           (7.9f) 

and the constants for a given layer k are 

e0k =
Δp0k
Δp0k

1
ε0k

κkhkΔBk
2p0k

+
κ0ih0iΔB0i

p0ii=1

k−1

∑       (7.9g) 

b0k =
g

Δp0k
ΔBk          (7.9f) 

f0k =
γ0kκ0kh0k
ε0k

         (7.9h) 

d0k =
γ0k p0k
ε0k

          (7.9i) 

The details of the matrices, vectors, and constants are given in Appendix C with an 
example for 6 layers. 
 
 Using Eq. (7.8), we can start to solve for the n+1 values by eliminating variables 
in spectral space. First, we put Eqs. (7.8d) and (7.8e) into Eq. (7.8b) to solve the w 
equation as 

δ wk = I − αδt( )2 ΓkiΜij
$
%

&
'
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αδt( )2 b0kΠ1i +Γkid0i( )δDi
* + S wk −αδt b0kS ps −ΓkiSpi( )$

%
&
'  (7.10) 

then by putting Eq. (7.10) into Eqs. (7.8c) and (7.8d), we have 
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* +αδtΖki

I − αδt( )2 ΓkiΜij
%
&

'
(
−1

αδt( )2 b0kΠ1i +Γkid0i( )δDi
* + S wk −αδt b0kS ps −ΓkiSpi( )%

&
'
(

 (7.11) 

δpk = Spk −αδtd0kδDk
* +αδtΜki

I − αδt( )2 ΓkiΜij
$
%

&
'
−1

αδt( )2 b0kΠ1i +Γkid0i( )δDi
* + S wk −αδt b0kS ps −ΓkiSpi( )$

%
&
'

 (7.12) 

Finally, we put Eqs. (7.11), (7.12) and (7.8e) into Eq. (7.8a), and we get 
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δDk
* = Ι+Ω( )−1 S

Dk
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n(n+1)
a2
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  (7.13) 

where 

Ω =
n(n+1)
a2

αδt( )2 Αkid0i +Βki f0i + e0kΠ1i( ){

− αδt( )2 ΑkiΜij +ΒkiΖij( ) I − αδt( )2 Γ jlΜlk
)
*

+
,
−1
b0 jΠ1l +Γ jld0l( )}

   (7.14) 

After we obtain the divergence change in Eq. (7.13), we can get the coordinate vertical 
velocity change from Eq. (7.10) with a divergence change.  Then by using the divergence 
change and coordinate vertical velocity change, we can solve for h and pressure changes 
with Eqs. (7.8c) and (7.8d), and the coordinate pressure change can be solved by Eq. 
(7.8e) by a divergence change.  With all variable changes solved, the n+1 prognostic 
variables are obtained. 
 
 
8.  Conclusion and discussion 
  
 A vertical discretization of a deep atmospheric nonhydrostatic system has been 
provided. However, there are several new methods introduced in this note, which are not 
published in any literature. We don’t know whether it is a proper method for deep 
atmospheric nonhydrostatic dynamics. For example, the mass coordinates defined here 
are somewhat different from Wood and Staniforth (2003), which were given based on the 
concept of Laprise’s mass conservation. What we introduced here is the concept of mean 
pressure at any given surface from the air weight on top of the surface, and normalizes it 
on the mean earth radius with mean gravitational force. Though the forms are slightly 
different, the mass coordinate concept is the same. 
 
 Based on the coordinate pressure, we have found several other variables can be 
used as height-weighted to simplify the discretization, such as height-weighted 
coordinate vertical velocity, and height-weighted coordinate density.  And the simplicity 
of the linear average of the values at neighboring model levels can be represented as the 
value at the model layer, such as with pressure, cubic height, and height-weighted 
coordinate vertical velocity. All these discretizations are not found in the literature, thus, 
it will be important to code the NCEP GSM following these discretizations to ensure 
these discretization equations are done properly. 
 
 From the angular momentum and total energy conservation properties, we can 
have following conclusions; (1) a deep-atmospheric system “has to be” a nonhydrostatic 
system with vertical component of Coriolis force, because w is shown in angular 
momentum conservation property which requires w equation and vertical component of 
Coriolis force; (2) a hydrostatic system “has to be” shallow atmosphere, because in 
hydrostatic system, w equation is not used, so vertical component of Coriolis force should 
not be existed in the horizontal momentum equation, thus r has to be constant for angular 
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momrntum conservation equation without w; (3) a nonhydrostaic system “can be” a 
shallow atmosphere without vertical component of Coriolis force, because angular 
momentum has no w due to r=a; and (4) a nonhydrostatic system “can be” a deep 
atmosphere system with vertical component of Coriolis force.  
 
 Furthermore, in this note, we have not included all possible numerical techniques, 
such as horizontal diffusion to control short wave noise, divergence damping to control 
excessive strong wind for Eulerian system and strong wind deformation for semi-
Lagrangian system, perturbation on surface pressure advection with related to terrain to 
avoid orographic resonance, and iteration to solve geopotential height due to the possible 
unstable from nonhydrostatic mass coordinates used in nonhydrostatic system. We may 
need some of these techniques after we code the system and will be written in the future 
note. Nonetheless, this note is sufficient to serve for starting a deep-atmospheric 
nonhydrostatic dynamics modeling on the sigma-pressure generalized hybrid coordinates. 
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Appendix A 
Detailed derivation for model-used continuity equation from height coordinate 

 
 Converting the density equation in different coordinates for the deep-atmospheric 
nonhydrostatic dynamics is somewhat tricky. Thus, this appendix will provide a detailed 
derivation for the density equation from z coordinates to generalized coordinates and to 
the spherical virtual wind generalized coordinate. The density equation in height 
coordinates as Eq. (2.6) can be written in direct conversion form as  

∂ρ
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= Fρ  (A.1) 

which is not the final form because there are two local time derivatives that should be 
taken care of. To do so, we put w in generalized coordinate form as follows 

w = ∂r
∂t
+

u
rcosφ

∂r
∂λ

+
v
r
∂r
∂φ

+ζ
• ∂r
∂ζ

       (A.2) 

and into the last term of Eq. (A.1), then we do each dimension separately in following 
equations, first for the temporal term as 
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the latitudinal terms as 
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the logitudinal terms as 
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and the vertical term as 
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Then we put Eqs. (A.3)-(A.6) into Eq. (A.1), and we have 
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and by multiplying the above with r2 ∂r
∂ζ
cosφ =α cosφ we get   
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let β = ρr2 ∂r
∂ζ
cosφ = ρα cosφ  and put it into the above equation, we get the density 

equation in generalized coordinates as 
∂β
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∂
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β λ
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= Fρ
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which is Eq. (2.12e).  Note that  

dm = ρdv = ρdxdydz = ρr2 ∂r
∂ζ
cosφdλdφdζ = βdλdφdζ     (A.10) 

so that ρ  is the density for x , y , and z coordinates and β  is the density for λ ,φ , and ζ
coordinates. 
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 It is the same procedure for generalized coordinates with virtual wind. The 
density equation with virtual wind in the z coordinate can be written as 
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Using the coordinate conversion, we can have the above equation in direct conversion 
form as 
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again, which is not the final form because there are two local time derivatives that should 
be taken care of. Again, to do so, we put w into generalized coordinates with virtual wind 
as follows 
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into the last term of Eq. (A.12), then we do each dimension separately in the following 
equations, first for the temporal term as it is the same as Eq. (A.3) and the third 
dimension as is the same as in Eq. (A.6); the remainder is the horizontal dimension in 
Eqs. (A.14) and (A.15). 
The latitudinal term as 
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and longitudinal term next 
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Then we put Eqs. (A.3), (A.14), (A.15), and (A.6) into Eq. (A.12), and we have
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when we multiply the above with α = r
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let ρ* = ρ r
2

a2
∂r
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 and put it into the above equation, we get the density equation in 

generalized coordinates as 
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Thus, the cosine is removed and the density is more like a height-weighted density. 
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Appendix B 
The base state for linearization 

 
 To linearize the discretized equations, we have to define a base state, as usually 
used in the NCEP GFS, which is a rest atmosphere with a given balanced hydrostatic 
state.  Let’s start by defining following constants 
p̂01 =101.326           (B.1) 
r̂01 = a = 6371220            (B.2) 
and the given thermodynamic constants for 
T0k              (B.3) 
which can be a constant (300K) or a function of a given lapse rate. And the related 
constants can be listed as follows 

h0k =CP0 k
T0k              (B.4) 

κ0k = R0k /CP0 k          (B.5) 
Then the base coordinate pressures at all levels can be defined by the base pressure at the 
first level as 
̂p0k = Âk + B̂k p̂01          (B.6) 

And from discretized form of Eq. (4.5)  
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and base hydrostatic state 

Δp0k
Δr0k

=
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r̂0k − r̂0k+1

= −ρ0kg         (B.8) 

we have a relation between base pressure and base coordinate pressure as 

Δp0k = Δ!p0k
a2

r0k
2          (B.9) 

To obtain base pressure, let’s have the first guess Δp0k = Δ!p0k  and use Eq. (B.8) to obtain  

r̂0k+1 = r̂0k + 2
p̂0k − p̂0k+1
p̂0k + p̂0k+1

κ0kh0k
g

       (B.10) 

And value at model layers as 

         (B.11) 

Then we use r in Eq. (B.11) to obtain new Δp0k  by Eq. (B.9), then repeat through (B.10) 
and (B.11) to get convergence of Δp0k . Thus, we have all base fields for linearization.  
 
  

r0k
3 =

1
2
r̂0k
3 + r̂0k+1

3( )
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Appendix C 
Matrices for semi-implicit scheme 

 
 We can summarize all linear terms in Section 6 with the definition in Section 7 
shown here with their matrices and vectors for the semi-implicit scheme as 

Dps
Dt

!

"
#

$

%
&
L

= −Π1kDk
*          (C.1) 

d wk

dt
!

"
#

$

%
&
L

= −b0k ps +Γki pi         (C.2) 

dpk
dt

!

"
#

$

%
&
L

= −d0kDk
* +Μki wi         (C.3) 

dhk
dt

!

"
#

$

%
&
L

= − f0kDk
* +Ζki wi         (C.4) 

dDk
*

dt
!

"
#

$

%
&
L

= −Αki∇
2pi −Βki∇

2hi − ek∇
2ps       (C.5) 

 
 Here we use only 6 layers for an example. In order to have the same vertical index 
direction as in the model, as in Fig. 1, we make the conventional matrix index in 
following way, for any given matrix B, as 

Β =

B66 B65 B64 B63 B62 B61
B56 B55 B54 B53 B52 B51
B46 B45 B44 B43 B42 B41
B36 B35 B34 B33 B32 B31
B26 B25 B24 B23 B22 B21
B16 B15 B14 B13 B12 B11

"

#

$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'

             (C.6) 

Then the matrix P, for converting differences in pressure at neighboring model levels to 
the pressure at a model layer is as follows 

Ρ =

0.5 0 0 0 0 0
1 0.5 0 0 0 0
1 1 0.5 0 0 0
1 1 1 0.5 0 0
1 1 1 1 0.5 0
1 1 1 1 1 0.5

"

#

$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'

             (C.7) 

the same for matrix W, for converting the difference in height-weighted coordinate 
vertical velocity at neighboring model levels to a model layer as 
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W =

0.5 1 1 1 1 1
0 0.5 1 1 1 1
0 0 0.5 1 1 1
0 0 0 0.5 1 1
0 0 0 0 0.5 1
0 0 0 0 0 0.5

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

             (C.8) 

We need to do a matrix invert for P and W in following matrices. Let’s start by listing 
matrices, vectors, and constants for all linear equations from (C.1) to (C.5). 
The vector for Eq. (C.1) is 

Π =
Δp06
ε06

Δp05
ε05

Δp04
ε04

Δp03
ε03

Δp02
ε02

Δp01
ε01

#

$

%
%

&

'

(
(            (C.9) 

The matrix for Eq. (C.2) with inverted matrix P is 

Γ =

gε06
4 /Δp06

gε05
4 /Δp05

gε04
4 /Δp04

gε03
4 /Δp03

gε02
4 /Δp02

gε01
4 /Δp01

0.5 0 0 0 0 0
1 0.5 0 0 0 0
1 1 0.5 0 0 0
1 1 1 0.5 0 0
1 1 1 1 0.5 0
1 1 1 1 1 0.5

#

$

%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(

−1

           (C.10) 

The constant for Eq. (C.2) is 

 b0k =
g

Δp0k
ΔBk                 (C.11) 

The matrix M for Eq. (C.3) follows with inverted matrix W 

 Μ =

γ06gp06
2 / κ06h06Δp06( )

γ05gp05
2 / κ05h05Δp05( )

γ04gp04
2 / κ04h04Δp04( )

γ03gp03
2 / κ03h03Δp03( )

γ02gp02
2 / κ02h02Δp02( )

γ01gp01
2 / κ01h01Δp01( )

0.5 1 1 1 1 1
0 0.5 1 1 1 1
0 0 0.5 1 1 1
0 0 0 0.5 1 1
0 0 0 0 0.5 1
0 0 0 0 0 0.5

#

$

%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(

−1

         (C.12) 

the constant for Eq. (C.3) is 

 d0k =
γ0k p0k
ε0k

                (C.13) 

The matrix Z for Eq. (C.4) with inverted matrix W is 
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 Z =

γ06gp06 /Δp06
γ05gp05 /Δp05
γ04gp04 /Δp04
γ03gp03 /Δp03
γ02gp02 /Δp02
γ01gp01 /Δp01

0.5 1 1 1 1 1
0 0.5 1 1 1 1
0 0 0.5 1 1 1
0 0 0 0.5 1 1
0 0 0 0 0.5 1
0 0 0 0 0 0.5

"

#

$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'

−1

          (C.14) 

The constant for Eq. (C.4) is 

f0k =
γ0kκ0kh0k
ε0k

                (C.15) 

Then the matrix A for Eq. (C.5) is 

 Α = −

Δp06
Δp06ε06
Δp05
Δp05ε05
Δp04
Δp04ε04
Δp03
Δp03ε03
Δp02
Δp02ε02
Δp01
Δp01ε01

κ06h06Δp06
2p06

2
κ05h05Δp05

p05
2

κ04h04Δp04
p04
2

κ03h03Δp03
p03
2

κ02h02Δp02
p02
2

κ01h01Δp01
p01
2

0 κ05h05Δp05
2p05

2
κ04h04Δp04

p04
2

κ03h03Δp03
p03
2

κ02h02Δp02
p02
2

κ01h01Δp01
p01
2

0 0 κ04h04Δp04
2p04

2
κ03h03Δp03

p03
2

κ02h02Δp02
p02
2

κ01h01Δp01
p01
2

0 0 0 κ03h03Δp03
2p03

2
κ02h02Δp02

p02
2

κ01h01Δp01
p01
2

0 0 0 0 κ02h02Δp02
2p02

2
κ01h01Δp01

p01
2

0 0 0 0 0 κ01h01Δp01
2p01

2

$

%

&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&

'

(

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

+

k06h06
p06ε06

0 0 0 0 0

0 k05h05
p05ε05

0 0 0 0

0 0 k04h04
p04ε04

0 0 0

0 0 0 k03h03
p03ε03

0 0

0 0 0 0 k02h02
p02ε02

0

0 0 0 0 0 k01h01
p01ε01

$

%

&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&

'

(

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

 (C.16) 

and the matrix B for Eq. (C.5) is the following 
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Β =

Δp06
Δp06ε06
Δp05
Δp05ε05
Δp04
Δp04ε04
Δp03
Δp03ε03
Δp02
Δp02ε02
Δp01
Δp01ε01

κ06Δp06
2p06

2
κ05Δp05
p05
2

κ04Δp04
p04
2

κ03Δp03
p03
2

κ02Δp02
p02
2

κ01Δp01
p01
2

0 κ05Δp05
2p05

2
κ04Δp04
p04
2

κ03Δp03
p03
2

κ02Δp02
p02
2

κ01Δp01
p01
2

0 0 κ04Δp04
2p04

2
κ03Δp03
p03
2

κ02Δp02
p02
2

κ01Δp01
p01
2

0 0 0 κ03Δp03
2p03

2
κ02Δp02
p02
2

κ01Δp01
p01
2

0 0 0 0 κ02Δp02
2p02

2
κ01Δp01
p01
2

0 0 0 0 0 κ01Δp01
2p01

2

#

$

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

        (C.17) 

finally, the constant for Eq. (C.5) is 

 e0k =
Δp0k
Δp0k

1
ε0k

κkhkΔBk
2p0k

+
κ0ih0iΔB0i

p0ii=1

k−1

∑             (C.18) 

All these are prepared initially and used to construct further matrices for the semi-implicit 
computation. 
 
 
 
 
  



 36 

Appendix D 
Initial conditions for a cold start from the hydrostatic system 

 
 Initial conditions from hydrostatic system will require the generation of vertical 
velocity and a vertical interpolation from the pressure defined hydrostatic system to a 
coordinate pressure defined deep atmospheric nonhydrostatic system. The pressure in 
deep-atmospheric nonhydrostatic system is also embedded in the relationship between 
coordinate pressure and height.  
 
 From our current hydrostatic data system, we have pressure defined as 
p̂k = Âk + B̂k ps           (D.1) 
and 

pk =
1
2
p̂k + p̂k+1( )

 
        (D.2) 

and for hydrostatic relationship in the hydrostatic system, we have 

ẑk+1 = ẑk + p̂k − p̂k+1( )κkhk
pkg

        (D.3) 

so the coordinate pressure in the hydrostatic system can be computed based on Eq. (4.15) 
as 

!̂pk( )
hyd
= !̂pk+1( )

hyd
+

ẑ + a( )3k+1 − ẑ + a( )3k( )
3a2

pg
κh
"

#
$

%

&
'
k  

    (D.4) 

with zero at top of coordinate pressure, and the coordinate pressure at ground surface 
becomes 

!̂ps = !̂ps( )
hyd
=

r̂k+1
3 − r̂k

3

3a2
pg
κh
"

#
$

%

&
'
kk=1

K

∑        (D.5) 

Then the coordinate pressure in deep-atmospheric nonhydrostatic system is defined by 
Eq. (6.13) to obtain new coordinates defined by coordinate pressure. So the prognostic 
variables in hydrostatic system can be interpolated to a deep atmospheric nonhydrostatic 
system by the coordinate depth between Eq. (D.4) and Eq. (6.13). The prognostic 
variables in this interpolation can be three dimensional momentum, enthalpy, and tracers. 
Then the iteration process in Appendix B is used to obtain regular pressure, which 
satisfies hydrostatic relationship and balanced with coordinate pressure. 
 
 We can obtain vertical motion from the hydrostatic system then interpolate as we 
mentioned in the last paragraph, or we can obtain it after interpolation in the deep 
atmospheric nonhydrostatic system.  To get vertical motion in the hydrostatic system, we 
can do a total derivative for Eq. (D.3) and get 

ŵk+1 = ŵk +
κkhk
pkg

dΔpk
dt

−Δpk
κkhk
γ pk

2g
dpk
dt  

     (D.6) 

and from Eq. (6.7), the above equation can be written as 
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ŵk+1 = ŵk +
κkhk
pkg

Ρki
−1 dpi
dt

−
Δpk
γ pk

dpk
dt

$

%
&

'

(
)        (D.7) 

From the hydrostatic system, see Juang (2011) Eq. (B.3), we know 
dpk
dt

=
m2

2
Vk
* •∇( p̂k + p̂k+1)− ΔpiDi

* +Vi
* •∇Δpi( )

i=k

K

∑
%
&
'

− ΔpiDi
* +Vi

* •∇Δpi( )
i=k+1

K

∑
(
)
*

 (D.8) 

and boundary conditions for Eq. (D.7) is 

ŵ1 =m
2 u1

* ∂zs
a∂λ

+ v1
* ∂zs
a∂ϕ

"

#
$

%

&
'         (D.9) 

and all vertical motion at model layers is given as 

wk =
1
2
ŵk + ŵk+1( )          (D.10) 

Then the vertical motion is interpolated from the hydrostatic system to deep atmosphere 
nonhydrostatic system as mentioned. 
 
 However, to get vertical motion in a deep atmospheric nonhydrostatic system with 
other interpolated prognostic variables, we can start with Eq. (5.11) as a total derivative 
as 

̂wk+1 = ̂wk +
κkhk
pkg

ΔBk
d ̂ps
dt

−Δpk
κkhk
γ pk

2g
dpk
dt

      (D.11) 

where the second term on the RHS can be given by Eq. (4.11) and the third term on the 
RHS is given by Eq. (5.26). Then the coordinate vertical motion at a model layer is given 
by Eq. (5.37) and the bottom condition by Eq. (5.38). 
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Fig. 1 The vertical grid structure with layers and levels is used in discretization. Integers 
are used to index the layers and levels.  Variables with a hat are on levels, and without a 
hat are on layers. 
 
 


